
Sprites and State Channels: Payment Networks that
Go Faster than Lightning

Andrew Miller
UIUC

Iddo Bentov
Cornell University

Ranjit Kumaresan
Microsoft Research

Christopher Cordi
Sandia National Laboratories

Patrick McCorry
Newcastle University

Abstract—Bitcoin, Ethereum and other blockchain-based cryp-
tocurrencies, as deployed today, cannot scale for wide-spread
use. A leading approach for cryptocurrency scaling is a smart
contract mechanism called a payment channel which enables
two mutually distrustful parties to transact efficiently (and only
requires a single transaction in the blockchain to set-up). Payment
channels can be linked together to form a payment network, such
that payments between any two parties can (usually) be routed
through the network along a path that connects them. Crucially,
both parties can transact without trusting hops along the route.

In this paper, we propose a novel variant of payment channels,
called Sprites, that reduces the worst-case “collateral cost” that
each hop along the route may incur. The benefits of Sprites are
two-fold. 1) In Lightning Network, a payment across a path of
` channels requires locking up collateral for Θ(`∆) time, where
∆ is the time to commit an on-chain transaction. Sprites reduces
this cost to Θ(` + ∆). 2) Unlike prior work, Sprites supports
partial withdrawals and deposits, during which the channel can
continue to operate without interruption.

In evaluating Sprites we make several additional contributions.
First, our simulation-based security model is the first formalism
to model timing guarantees in payment channels. Our construc-
tion is also modular, making use of a generic abstraction from
folklore, called the “state channel,” which we are the first to
formalize. We also provide a simulation framework for payment
network protocols, which we use to confirm that the Sprites
construction mitigates against throughput-reducing attacks.

Index Terms—bitcoin, ethereum, blockchains

I. INTRODUCTION

Blockchain-based cryptocurrencies such as Bitcoin,
Ethereum, and others, partially derive their security from their
wide replication, which unfortunately comes at the expense of
limited scalability. A leading proposal for improved scaling
of cryptocurrencies is to form a network of “off-chain” rapid
payment channels, which act like credit lines secured by
“on-chain” currency. In this vision for the future, today’s
cryptocurrencies will serve primarily as a settlement layer,
such that interaction with the blockchain will not be needed
for most payments.

A chief concern for the feasibility of payment channel
networks is if enough collateral will be available for pay-
ments to be routed at high throughput. For every pending
payment, some money in the channel must be reserved and
held aside as collateral for the duration until the payment
is completed, called the “locktime”. Even though off-chain
payments complete quickly in the typical case, if parties fail
(or act to maliciously impose a delay), the collateral can be
locked up for longer, until a dispute handler can be activated
on-chain. Channels can also become unbalanced or depleted

Transfer $1
by revealing

x before T+ℓΔ

P2 Pℓ-1P1
Pℓ

Transfer $1 if
anyone reveals
x before T+ℓ+Δ

Transfer $1 if
anyone reveals
x before T+Δ

P2 Pℓ-1P1
Pℓ

(a)

(b)

Linked Payments (Lightning)

Linked Payments (Sprites)

Transfer $1
by revealing
x before T+Δ

Fig. 1. Cryptocurrencies like Bitcoin and Ethereum can serve as collateral
for a scalable payment network (i.e. a credit network without counterparty
risk) [49], [14]. Payment channels let one party rapidly pay another using
available collateral, requiring a blockchain transaction only in case of dispute.
Payments across multiple channels (a) can be linked using a common
condition (such as revealing the preimage x of a hash h). We contribute
a novel payment channel (b) which improves the worst case delay for `-hop
payments from Θ(`∆) to Θ(` + ∆).

if too many payments are made in one direction, requiring
on-chain transactions to rebalance. If a channel is depleted, it
cannot be used in a payment path. A payment fails if no paths
with sufficient capacity are found.

We characterize the performance of a payment channel
protocol as its “collateral cost”, which we think of as the
lost opportunity value of money held in reserve (i.e., in unit
of money × time) during the locktime. To provide wide
connectivity without requiring too much collateral, payment
channel networks rely on linked payments that span a path
of multiple channels. The longer the payment path, the more
collateral must be reserved: for a payment of size $X across
a path of ` channels, a total of O(`$X) money must be
reserved. The worst-case delay until the collateral is released
depends on a timeout parameter. Due to limitations in current
state-of-the-art payment channels, namely Lightning [49] and
Raiden [41], each link in a payment path adds an delay to the
timeout parameter. This additional delay depends on the worst-
case confirmation time for an on-chain broadcast, which we
denote by ∆ (i.e., an on-chain transaction may take ∆ times
longer than an ordinary off-chain message from one party to
another). Thus the worst-case delay for a payment in Lightning
is Θ(`∆), and so the total collateral cost (money × time) of
a $X payment over a path of length ` is Θ(`2$X∆).

Sprites also features an additional improvement, the ability
to make incremental deposits to and withdrawals from a
channel without interrupting it use for payments. In contrast,

ar
X

iv
:1

70
2.

05
81

2v
2

 [
cs

.C
R

]
 3

0
N

ov
 2

01
7

previous payment channel constructions must be closed and
reopened (pausing for any pending payments to complete)
in order to support deposits or withdrawals which inevitably
harms throughput.

The design of Sprites is highly modular. A key contribution
of our work is the formal development of a useful general
primitive from folklore called a “state channel,” which is of
independent interest. A state channel allows two or more par-
ties to maintain an off-chain replicated state machine that can
be synchronized on demand (or in case of a dispute) with the
blockchain. We demonstrate the use of state channels through
our Sprites construction; the abstraction neatly encapsulates
the cryptography behind payment channels, such that our high
level constructions need not mention digital signatures at all.
We formally define and prove the security properties of our
constructions using the simulation-based UC framework.

Another important question is what resulting topology will
emerge from cryptocurrency payment channel networks. In the
decentralized ideal, users would establish channels with peers
in their social network. However, worryingly, high collateral
costs associated with long payment paths may create an
economic pressure towards a more centralized structure, with
most individuals forming channels with only a small number
of well connected bank-like hubs. We evaluate the impact of
our contribution with a simulation experiment, which features
multiple topologies, and incorporates recent designs (off-chain
rebalancing [24], and decentralized route-finding [50]). Not
only does Sprites improve throughput and lower collateral
costs, but the effect is most significant for decentralized
configurations. Our work therefore directly supports realizing
the vision of the decentralized payment channel networks.

The constant locktime feature in Sprites requires the flex-
ibility of Ethereum-style smart contracts — in particular, the
ability for a transaction to depend on a “global” event recorded
in the blockchain — and therefore cannot (we conjecture) be
implemented in Bitcoin. This finding therefore adds to our
understanding of the separation between Bitcoin and Ethereum
smart contracts, which we hope informs the design of future
systems.

II. BACKGROUND AND PRELIMINARIES

A. Bitcoin and Blockchains

Bitcoin is the first and (currently) most successful cryp-
tocurrency, i.e. an open peer-to-peer network that implements
a digital currency. The Bitcoin currency itself is not backed
by anything else, but consists only of balances stored within
the records of a shared blockchain database. The average
cost of a transaction in Bitcoin is currently over $1 USD. It
takes 10 minutes on average for a Bitcoin block to be found,
“confirming” the transaction, but since the mining process is
random, this can often take much longer. Users are typically
advised to wait for multiple (e.g., 6) confirmations before
considering a transaction finalized, since forks can occur. It
is now well-understand that Bitcoin has severe performance
limits. Not only does finalizing a transaction take an hour in
expectation, but the overall network is limited to a throughput

of around 7 transactions per second [13]. For a survey on
Bitcoin and cryptocurrencies, see Bonneau et al. [9].

The success of cryptocurrencies has further spurred interest
in blockchain technology, which broadly refers to any secure
database shared among multiple distrusting entities. In the
case of decentralized cryptocurrencies like Bitcoin, these are
open to the public, and are powered by the voluntary partic-
ipation of anonymous “miners.” Alternatively, “permissioned
blockchains,” resemble more traditional distributed state ma-
chines, rely on a defined set of participants, typically appointed
by an administrative institution (e.g., a consortium of banks).
In either case, blockchains derive their resilience through
broad replication, which seems to come at inherent cost.

At a high level, the blockchain abstraction (see [17], [5],
[27]) is an append-only replicated data structure that ensures
the following properties:

1) All parties can agree on a consistent log of committed
transactions.

2) All parties are guaranteed to be able to commit new
transactions in a predictable amount of time.

To elaborate on the latter property, what we want is a worst-
case bound on how long it takes to learn about a committed
transaction, then to publish a new transaction in response, and
then for that transaction also to be committed. We call this
time bound an “on-chain round” and denote it with ∆. That
is, an on-chain round takes at most ∆ units of time. We say
one unit of time corresponds to the maximum delay needed to
transmit an (off-chain) point-to-point message from any one
party to another.

Nearly every blockchain cryptocurrency (such as Bitcoin,
Ethereum, etc.) features (a) some built-in digital currency that
can be transferred between users via on-chain transactions,
and (b) some form of scripting language (e.g., Bitcoin script,
or Ethereum Virtual Machine bytecode) for writing smart
contracts that direct the flow of digital currency. Throughout
this paper, we use smart contract pseudocode resembling both
Ethereum and the UC framework [10], where contracts are
written as reactive processes that respond to messages or
method invocations.

B. Blockchain scaling

Proposed scalability improvements fall in roughly two com-
plementary categories. The first, “on-chain scaling”, aims to
make the blockchain itself run faster [26], [32], [47], [21]. A
recurring theme is that the additional performance comes from
introducing stronger trust assumptions about the nodes.

The second category of scaling approaches, which includes
our work, is to develop “off-chain protocols” that minimize
the use of the block-chain itself. Instead, parties transact
primarily by exchanging off-chain messages (i.e., point-to-
point messages from one party to another), and interact with
the blockchain only to settle disputes or withdraw funds.

C. Off-chain Payment Channels

The first off-chain protocols were Bitcoin payment channels,
due to Spilman [51]. In a payment channel, Alice opens a

channel to Bob by initiating an on-chain deposit transaction,
binding the deposit amount to a smart contract program. The
two parties can then make an arbitrary number of rapid pay-
ments between them, simply by exchanging signed messages
off-chain. A final on-chain transaction is needed to close
the channel and distribute the final balance according to the
code of the payment channel smart contract. The miners or
validating nodes maintaining the blockchain never have to
process the off-chain payments.

Spilman’s payment channels only allow for unidirectional
payments (i.e., the sender and receiver roles must be fixed
at channel creation). Subsequent channel constructions by
Decker and Wattenhofer [14] as well as Poon and Dryja [49]
supported “duplex” payments back-and-forth from either party
to the other. Because of the limitations of Bitcoin script, these
constructions are subtle and require intricate workarounds
(e.g., Poon and Dryja’s channels require parties to store
an ever-growing list of revocation keys to defend against
malicious behavior). Simpler payment channel constructions
have been developed for Ethereum, based on signatures over
round numbers [41], [48], [8]. For simplicity, we present only
this latter approach; the underlying techniques are essentially
the same. An off-chain payment channel protocol roughly
comprises the following three phases:
Channel opening. The channel is initially opened with an on-
chain deposit transaction. This reserves a quantity of digital
currency and binds it to the smart contract program.
Off-chain payments. To make an off-chain payment, the par-
ties exchange signed messages, reflecting the updated balance.
For example, the current state would be represented as a
signed message (σA, σR, i, $A, $B), where a pair of signatures
σA and σB are valid for the message (i, $A, $B), where
$A (resp. $B) is the balance of Alice (resp. Bob) at round
number i. Each party locally keeps track of the current balance,
corresponding to the most recent signed message.
Dispute handling. The blockchain smart contract (bound by
the deposit transaction) serves as a “dispute handler.” It is
activated when either party suspects a failure, or wishes to
close the channel and withdraw the remaining balance. The
dispute handler remains active for a fixed time, during which
either party can submit evidence (e.g., signed messages) of
their last-known balance. The dispute handler accepts the
evidence with the highest round number and disburses the
money accordingly.

The security guarantees, roughly, are the following:
(Liveness): Either party can initiate a withdrawal, and the
withdrawal is processed within a predictable amount of time.
If both parties are honest, then payments are processed very
rapidly (i.e., with only off-chain messages).
(No counterparty risk): The payment channel interface offers
Bob a local estimate of his current balance (i.e., how many
payments he has received). Alice, of course, knows how much
she has sent. The “no counterparty risk” property guarantees
that local views are accurate, in the sense that each party can
actually withdraw (at least) the amount they expect.

D. Linked payments and payment channel networks
Duplex payment channels alone cannot solve the scalability

problem; opening each channel requires an on-chain transac-
tion before any payments can be made. To connect every pair
of parties in the network by a direct channel would require
O(N2) transactions.

Poon and Dryja [49] developed a method for linking pay-
ments across multiple channels, suggesting the potential to
connect every pair of participants through a sparse graph.
Consider the capacity graph where an edge between two
participants represents an active payment channel with some
available balance. If a path with sufficient capacity can be
found between Alice and Bob, then Alice can send Bob an
off-chain payment off-chain.

Linked payments are based on the “hashed timelock con-
tract” (HTLC) for conditional payments that relies on a single
hash h = H(x) to synchronize a payment across all channels.
Similar conditional payment techniques are used to facilitate
across-blockchain transfers [44], [40], [34] and for establishing
fair multiparty computation [7], [29]. We denote an HTLC
conditional payment from P1 to P2 by the following:

P1
$X−−−−−→
h,T

P2

which says that a payment of $X can be claimed by P2 if
the preimage of h is revealed (i.e., by publishing a secret x
such that h = H(x), via an on-chain transaction). Otherwise,
the conditional payment can be canceled after a deadline T .
Operationally, opening a conditional payment means signing
a message that defines the deadline, the amount of money,
and the hash of the secret h = H(x); and finally sending the
signed message to the recipient. Conditional payments can also
complete rapidly off-chain in the optimistic case: the sender
signs a new message representing an unconditional payment,
with a higher round number to supercede the conditional
payment.

Consider a path of parties, P1, ..., P`, where P1 is the sender,
P` is the recipient, and the rest are intermediaries. In a linked
off-chain payment, Each node Pi opens a conditional payment
to Pi+1, one after another.

P1
$X−−−−−−−−−−−−−−→

h,T1=T`−1+Θ(`∆)
P2 ... P`−1

$X−−−−−−−→
h,T`−1

P` (E)

Note that the hash condition h is the same for all channels.
However, the deadlines may be different. In fact, Lightning
requires that T1 = T` + Θ(`∆) as we explain shortly.
The desired security properties of linked payments are the
following (in addition to those for basic channels given above):
(Liveness): The entire chain of payments concludes (com-
pletes successfully or is canceled) within a bounded amount of
time (measured in on-chain transaction cycles). If all parties on
the path are honest (i.e., do not crash or fail), then the entire
payment should complete successfully, using only off-chain
messages (i.e., not depending on ∆).

(No counterparty risk): A key desired property is that inter-
mediaries (along the path from sender to receiver) should not
be placed at risk of losing funds. During the linked payments
protocol, a portion of the channel balance may be “locked”
and held in reserve, but it must returned by the conclusion
of the protocol (regardless of whether the payment completes
or cancels).1 This guarantee must hold regardless of which
parties are corrupted. This property poses a challenge that
constrains the choice of deadlines {Ti} in Lightning. Consider
the following scenario from the point of view of party Pi.

... Pi−1
$X−−−−−→
h,Ti

Pi
$X−−−−−−−→

h,Ti+1

Pi+1 ...

We need to ensure that if the outgoing conditional payment to
Pi+1 completes, then the incoming payment from Pi−1 also
completes. In the worst case where Pi+1 attempts to introduce
the maximum delay for Pi (which we call the “petty” attacker),
the party Pi only learns about x because x is published in the
blockchain at the last possible instant, at time Ti+1. In order to
complete the incoming payment, if Pi−1 is also petty then Pi

must publish x to the blockchain by time Ti. It must therefore
be the case that Ti ≥ Ti+1 + ∆, meaning Pi is given an
additional grace period of time ∆ (the worst-case bound on
the time for one on-chain round).

We use the term “collateral cost” to denote the product of
the amount of money $X multiplied by the locktime (i.e.,
from when the conditional payment is opened to the time it
is completed or canceled). Since the payment can be claimed
by time T` + Θ(`∆) in the worst case, the overall collateral
cost is Θ(`2$X∆) for each party (see Figure 1 (a)). The main
goal of our Sprites construction (Section III) is to reduce this
collateral cost.

E. Related Work

a) Improvements to Payment Channels: Payment channel
networks have recently seen significant research interest, with
several concurrent efforts to improve their performance and
security.

Gervais et al. [24] proposed the “Revive” protocol for
rebalancing payment channels off-chain. We incorporate this
into our simulation experiment in Section VI.

While in this paper we focus on the mechanism for exe-
cuting linked payments, it remains an open problem how best
to find routes through payment channel networks. Flare [50]
and Landmark Routing [33] are two proposed methods. We
reproduce an experiment for the former [50], but leave the
latter as future work.

Dziembowski et al. [16] developed a mechanism for virtual
payment channel overlays. This allows two parties with a
path to establish a faster channel between them. This is
complementary to our work, and we think both approaches
could be fruitfully combined.

1The intermediary nodes in a path can also be incentivized to participate in
the route if the sender allocates an extra fee that will be shared among them.

Green and Miers [19] as well as Moreno-Sanchez et al. [20]
present hub-based off-chain payment protocols that offer pri-
vacy but cannot support linked payments more than one hop
away from the hub. Malavolta et al. [33] develop a privacy-
oriented construction for linked payment channels, which is
complementary to our work.

b) Credit networks: Malavolta et al. [38] developed a
protocol for privacy-preserving credit networks. The main
difference between a payment channel and a credit line is
that payment channel balances are fully backed by on-chain
deposits, and can be settled without any counterparty risk;
lines of credit seem inherently to expose counterparty risk.

c) Probabilistic micropayments: An alternative approach
for off-chain micropayments is a lottery-based construction by
Pass and shelat [46]. However, this requires either a semi-
trusted third party, or else to lock up additional collateral
(larger than the total amount of money that can be paid) to
avoid a “front-running” attack. Chiesa et al. [12] also design
lottery-based micropayments that provide strong privacy, but
assume rational adversaries.

d) Federated sidechains: A related proposal is to run
a “sidechain,” consisting of an off-chain consensus protocol
run amongst a set of nodes called “functionaries,” which
jointly control a balance of on-chain deposits [4], [15]. For
example, to withdraw from a sidechain requires signatures
from a majority (e.g., 5 out of 7) of the functionaries. This can
be instantiated with consensus protocols that bootstrap from
an existing blockchain [26], [32], [47]. The main difference
is that payment channels protocols guarantee security in a
stronger sense, even if all the parties are corrupted, whereas in
federated sidechains, a majority of functionaries misbehaving
could compromise security, e.g. steal funds.

III. OVERVIEW OF THE SPRITES CONSTRUCTION

We first give a high-level overview of our construction,
focusing on the main improvements versus Lightning [49]:
constant locktimes and incremental withdrawals/deposits. We
assume as a starting point the duplex payment channel con-
struction described earlier in Section II-C and presented in
related works [8], [41], [48]).

A. Constant locktime linked payments.
To support linked payments across multiple payment chan-

nels, we use a novel variation of the standard “hashed timelock
contract” technique [7], [29], [44], [49].

We start by defining a simple smart contract, called the
PreimageManager (PM), which simply records assertions of
the form “the preimage x of hash h = H(x) was published on
the blockchain before time TExpiry.” This can be implemented
in Ethereum as a smart contract with two methods, publish
and published (see Figure 11).

Next we extend the duplex payment channel construction
with a conditional payment feature, which can be linked across
a path of channels as shown:

P1
$X−−−−−−−−−−→

PM[h,TExpiry]
P2 ... P`−1

$X−−−−−−−−−−→
PM[h,TExpiry]

P` (?)

In the above, the conditional payment of $X from P1 to P2

can be completed by a command from P1, canceled by a
command from P2, or in case of dispute, will complete if and
only if the PM contract receives the value x prior to TExpiry.
As with the existing linked payments constructions [41], [48],
operationally this means extending the structure of the signed
messages (i.e., the off-chain state) to include a hash h, a
deadline TExpiry, and an amount $X . To execute the linked
payment, each party first opens a conditional payment with
the party to their right, each with the same conditional hash.
Note that here the deadline TExpiry is also a common value
across all channels.

The difference between Sprites and Lightning is how Sprites
handles disputes. Instead of each payment channel smart
contract making a local decision about whether the preimage x
was revealed on time, in Sprites we delegate this to the global
PM contract. In short, each Sprites contract defines a dispute
handler that queries PM to check if x was revealed on time,
guaranteeing that all channels (if disputed on-chain) will settle
in a consistent way (either all completed or all canceled). It
then suffices to use a single common expiry time TExpiry, as
indicated above (?).

The preimage x is initially known to the recipient; after
the final conditional payment to the recipient is opened, the
recipient publishes x, and each party completes their outgoing
payment. Optimistically, (i.e., if no parties fail), the process
finishes after only ` + 1 off-chain rounds. Otherwise, in the
worst case, any honest parties that completed their outgoing
payment submit x to the PM contract, guaranteeing that their
incoming payment will complete, and thus conserving their net
balance. This procedure ensures that each party’s collateral is
locked for a maximum of O(`+ ∆) rounds.

The worst-case delay scenarios for both Lightning and
Sprites are illustrated in Figure 2. The worst-case delay in
either case occurs when an attacker publishes the preimage
x on-chain at the latest possible time. However, the use of a
global synchronizing gadget, the PM contract, ensures that all
payments along the path are settled consistently. In contrast,
Lightning [49] (and other prior payment channel networks
[41], [14], [33], [16]) require the preimage to be submitted to
each payment channel contract separately, leading to longer
locktimes.

B. Supporting incremental deposits and withdrawals.

A Lightning channel must be closed and re-opened in order
for either party to withdraw or deposit currency. Furthermore,
all pending conditions must be settled on-chain and no new
off-chain transactions can occur for an on-chain round (O(∆)
time) until a new channel is opened on the blockchain. On the
other hand, Sprites permits either party to deposit/withdraw a
portion of currency without interrupting the channel.

To support incremental deposits, we extend the off-chain
state to include local views, deposits{L,R}, which reflect the
total amount of deposits from each party recorded by the smart
contract. If one party proposes a view that is too stale (i.e.,

open(h) open(h)

publish(x)

(preimage, x)

publish(x)

open(h) open(h)

disputedispute

publish(x)
publish(x)

dispute

open(h)

(preimage, x)

open(h)

completecomplete
TExpiry

TExpiry+

△

(preimage, x)

complete

(preimage, x)

T1

T3

T1

Fig. 2. The worst-case delay scenario, in Lightning (left) and in Sprites (right).
The two parties shown are “petty,” dropping off-chain messages (striken red)
after the initial open, and sending on-chain transactions (blue) only at the
last minute. Disputes in Lightning may cascade, whereas in Sprite they are
handled simultaneously.

more than some bound O(∆) behind), then the other party
initiates an on-chain dispute. Of course, the on-chain dispute
handler can read the current on-chain state directly.

To support incremental withdrawals, we implement the
following. We extend the off-chain state with an optional
withdrawal value wdi, which can be set whenever either party
wishes to make a withdrawal (of course, both parties only
sign off on such state if there is sufficient balance). The on-
chain smart contract is then extended with an update method
that either party can invoke to submit a signed message with
a withdrawal value. Rather than close, the smart contract
verifies the signatures, disburses the withdrawal, and advances
the round number to prevent replay attacks. Further off-chain
payments can continue, even while waiting for the blockchain
to confirm the withdrawal.

IV. THE STATE CHANNEL ABSTRACTION

In this section we present the general purpose “state chan-
nel” abstraction, which is the key to our modular construction
of Sprites payment channels. A state channel generalizes
the “off-chain payment channels” mechanism as described in
Section II-C. The state channel primitive exposes a simple
interface: a consistent replicated state machine, shared between
two or more parties. The state machine evolves according to an
arbitrary, application-defined transition function. It proceeds in
rounds, during each of which inputs are accepted from every
party. This primitive neatly abstracts away the on-chain dispute
handling behavior and the use of off-chain signed messages
in the optimistic case.

Each time the parties provide input to the state channel, they
exchange signed messages on the newly updated state, along
with an increasing round number.

If at any time a party fails (or responds with invalid
data), remaining parties can raise a dispute by submitting the
most recent agreed-upon state to the blockchain, along with
inputs for the next round. Once activated, the dispute handler
proceeds in two phases. First, the dispute handler waits for
one on-chain round, during which any party can submit their
evidence (i.e., the most recently signed message confirming an
agreed-upon state). The dispute handler checks the signatures
on the submitted evidence, and ultimately commits the state
with the highest round number. After committing the previous

state, the dispute handler then allows parties to submit new
inputs for the next round.

The use of the term “state channel” to denote a generalized
payment channel appears in folklore [2], however the concept
has not yet been precisely formalized. A novel feature of our
model is a general way to express side effects that the state
channel has on the blockchain. Besides the inputs provided
by parties, the application-specific transition function can also
depend on auxiliary input from an external contract C on
the blockchain (which, for example, can collect currency
deposits submitted by either party). The transition function
can also define an auxiliary output for each transition, which
is translated to a method invocation on the external smart
contract C (e.g., triggering a disbursement of coins). This
feature generalizes the handling of withdrawals as transfers
of on-chain currency. We now present a security definition
for state channels as an ideal functionality, followed by our
construction in more detail.

A. Modeling a State Channel as an ideal functionality

Following several prior works, [5], [27], [37], [7], [29], [30],
[31], [25], we formally specify our smart contract protocol
as an ideal functionality, based on the UC simulation-based
security framework [10]. The ideal functionality for state
channels, FState, is defined in Figure 3. This functionality
is parameterized by an update function, U , which can be
customized by a developer to specialize the state channel for
different applications. The functionality proceeds in rounds,
where in each round inputs from all parties {Pi} are accumu-
lated within a bounded time O(∆). For any parties that fail to
provide input in time, a default value ⊥ is assumed. Finally,
the state channel applies the state transaction function to the
previous round’s state using the new inputs collected before
broadcasting the new state to each party.

A key technical contribution of our formalism is a generic
way to capture side effects on the blockchain, which is
essential for composition of smart contract protocols. Roughly,
we model a hybrid world where ideal functionalities and
blockchain smart contracts interact, i.e. an ideal functionality
can read from and post messages to the blockchain and invoke
smart contract methods. This notion is a natural extension
of the global ledger functionality [5], which models the
blockchain as a shared resource accessible in both the real
and ideal worlds, and the commonly-used “coins” model [7],
[29], [30], [31], [25], in which ideal functionalities and parties
can both send and receive money. The FState functionality
is parameterized with a reference to (i.e., the address of) an
external blockchain smart contract C, with which the function-
ality communicates through the aux input and aux output

methods. Incoming messages from contracts are delayed by a
time of up to Θ(∆), reflecting the fact that on-chain deposits
are guaranteed to be available after one on-chain round.
Outgoing messages are also delayed by up to Θ(∆), reflecting
that an on-chain transaction is needed to apply the on-chain
action.

Functionality FState(U,C, P1, ..., PN)

• Initialize auxin := [⊥], ptr := 0, state := ∅, buf := ∅
• on contract input aux input(m) from C:

append m to buf, and let j := |buf| − 1
within ∆: set ptr := max(ptr, j)

• proceed sequentially according to virtual rounds r,
initially r := 0

for each party Pi:
wait to receive input vr,i
if vr,i is not received within O(∆) time, set vr,i := ⊥
leak (i, vr,i) to A

after receiving all inputs,
(state, o) := U(state, {vr,i}, auxin[ptr])
send state to each player within time O(1) if all
parties are honest, and within O(∆) otherwise;
if o 6= ⊥, within O(∆) invoke C.aux output(o)

Fig. 3. Ideal functionality for general purpose state channel

To summarize, in each round, the FState invokes the transi-
tion update function U on inputs state (the previous state), the
inputs {vr,i} supplied by the parties, and the external contract
input auxin collected from C. Finally, the updated state is sent
to all players within a bounded time delay of Θ(∆).

a) Security properties exhibited by the FState function-
ality: As mentioned, the functionality maintains a singular
sequential view of the current state, which is delivered con-
sistently to each party. In each round, inputs from every
party are included. The state is updated correctly according
to the application-defined transition function. We note that the
specification provides no input privacy (as FState explicitly
leaks inputs to A), and in fact the adversary can front-run
(i.e., adversarial inputs in a round can depend on honest party
inputs).

We remark that the ideal functionality FState exhibits fine-
grained liveness and timing guarantees. First, in the optimistic
case when both parties are honest, the payment is guaranteed
to complete within a small amount of time (off-chain messages
only). Even a malicious party cannot delay the advancing of
rounds very much, since if they timeout their input is replaced
with ⊥ and execution proceeds. Second, the functionality also
guarantees that for each state transition with a side effect, the
side effect is applied on the blockchain (i.e. the C.aux output

is invoked) exactly once, within a bounded time. Furthermore,
the functionality guarantees that external contract inputs from
C (i.e., aux input method invocations) are incorporated in
the inputs to the update function within a bounded time.

B. Instantiating state channels

We focus on explaining the behavior of the dispute handler
smart contract, ContractState, defined in Figure 4, which is
the protocol centerpiece; a detailed description of the local
behavior for each party is deferred to the appendix (D). At

a high level, the off-chain state can be advanced by having
parties exchange a signed message of the following form (for
the party Pi):

σr,i := SignPi
(r‖stater‖outr).

where r is the number of the current round, stater is the
result after applying the state transition function to every
party’s inputs, and outr is the resulting blockchain output
(or ⊥ if this transition makes no output). In the appendix we
describe a leader-based broadcast protocol used to help parties
optimistically agree on a vector of inputs. We now explain how
ContractState handles disputes, as illustrated in Figure 5.

Protocol ΠState(U,P1, ...PN)

Contract ContractState
Initialize bestRound := −1
Initialize state := ∅
Initialize flag := OK

Initialize deadline := ⊥
Initialize applied := ∅
on contract input evidence(r, state′, out, {σr,j}):

discard if r ≤ bestRound
verify all signatures on the message (r‖state′‖out)
if flag == DISPUTE then

flag := OK

emit EventOffchain(bestRound + 1)

bestRound := r
state := state′

invoke C.aux output(out)
applied := applied ∪ {r}

on contract input dispute(r) at time T :
discard if r 6= bestRound + 1
discard if flag 6= OK

set flag := DISPUTE

set deadline := T + ∆
emit EventDispute(r, deadline)

on contract input resolve(r) at time T :
discard if r 6= bestRound + 1
discard if flag 6= PENDING

discard if T < deadline
apply the update function state := U(state, {vr,j},
auxin), where the default value is used for any vr,j such
that party Pj has not provided input
set flag := OK

emit EventOnchain(r, state)
bestRound := bestRound + 1

on contract input input(r, vr,j) from party Pj :
if this is the first such activation, store vr,j

Fig. 4. Contract portion of the protocol ΠState for implementing a general
purpose state channel, FState.

EventOnChain

OK1 OK3

DISPUTE2

OK2

EventDispute

EventOffChain EventOffChain

...

EventOffChain

evidence

….

dispute resolve

Fig. 5. State transitions in ContractState. Any party may invoke the dispute
method to transition from OKr to DISPUTEr+1. From any DISPUTEr state (or
OKr), an evidence(r′) message with signatures from all parties can transition
to OKr′ for any r′ ≥ r or later round. If no evidence is invoked by T + ∆,
the resolve method can advance the state by applying U to inputs provided
on-chain.

Raising a dispute. Suppose in round r a party fails to receive
signatures from all the other parties (i.e., evidence) for some
(stater, outr) before an O(1) timeout. They then 1) invoke the
evidence method to provide evidence that round (r− 1) has
already been agreed upon and can be used as a checkpoint,
and 2) invoke the dispute(r) method, which notifies all the
other parties (EventDispute).

Resolving disputes off-chain. Once raised, a dispute for round
r will be resolved in one of two ways. First, another party may
invoke the evidence(r′, ...) method to provide evidence that
an r or a later round r′ ≥ r has already been agreed upon off-
chain, clearing the dispute (EventOffchain). This can occur,
for example, if a corrupted node attempts to disputes an earlier
already-settled round.

Resolving disputes on-chain. Alternatively, if a party Pj has
no more recent evidence than (r− 1), they invoke the input

method on-chain with their input vr,j . After the deadline T +
∆, any party can invoke the resolve method to apply the
update function to the on-chain inputs (EventOnchain).

Avoiding on-chain / off-chain conflicts. We now explain how
we avoid a subtle concurrency hazard. Suppose in round r, a
party receives the Dispute(r, T) event, and shortly thereafter
(say, T + ε, for some ε > 0), receives a final signature
completing the off-chain evidence for round r. It would be
incorrect for the party to then invoke evidence(r, ...), since
this invocation may not be confirmed until after T + ∆ + ε. If
a malicious adversary equivocates, providing input(v′r,j) on-
chain but vr,j off-chain, the off-chain evidence would arrive
too late. Instead, upon receiving a Dispute(r) event, if the
party does not already have evidence for round r, it pauses
the off-chain routine until the dispute is resolved.

Theorem 1. The ΠState protocol realizes the FState function-
ality assuming one way functions exist.

In the appendix we construct a simulator that translates
every behavior in the real world with ContractState to an
adversary in the ideal world with FState, and argue that in
every case the two worlds are indistinguishable.

C. Modeling payment channels as an ideal functionality

To demonstrate the use of the FState abstraction (and as
a warmup to our full construction in Section V) we now
construct a duplex payment channel (e.g., as in [8], [48], [41]).
We first present our security model as an ideal functionality
FPay. Recall that a payment channel is established between
two parties via a deposit of on-chain currency. Once estab-
lished with a deposit of on-chain currency, the parties can
rapidly pay each other by transferring a portion of this balance
using only off-chain messages, resorting to interaction with the
blockchain only in case of a dispute or mutual agreement to
terminate. Our payment channel ideal functionality is defined
in Figure 6. It is parameterized by the (pseudonyms of) a pair
of parties, PL and PR, which are fixed at channel creation time
(e.g., via an Ethereum transaction). The functionality keeps
track of the local balance of parties, bal{L,R}. It also defines a
contract input method deposit, which can be invoked through
an on-chain transaction and has the side effect of transferring
coins from the party to the contract. The pay method debits the
sender’s balance immediately, but increments the recipient’s
balance after a bounded delay. This models the fact that honest
senders will immediately subtract the payment from their
local view, but the recipient will only update their view after
the parties reach agreement off-chain (or settle a dispute on-
chain). Finally, the withdraw method triggers a disbursement
of coins. All these method invocations are immediately leaked
to the adversary, reflecting the fact that our model does not
aim to capture privacy guarantees.

We now explain how the payment channel functionality
FPay exhibits the following properties desired of a payment
channel (recalled from Section II-C):
(No counterparty risk): The functionality processes each
withdraw($X) message from party Pi according to its record
of their balances bali, sending coins($X) if $X ≤ bali.
(Liveness): Each payment command pay($X) is processed
within a bounded time. In fact the functionality provides
stronger time bounds when both parties are honest, reflecting
that in the optimistic case payments are completed using only
off-chain communication; even in the case that some party is
corrupt, progress is guaranteed within O(∆) rounds by the
on-chain dispute process.

D. Constructing FPay from FState

In Figure 7 we give a construction that realizes FPay in the
FState-hybrid world. Our construction consists of 1) an update
function, UPay, which defines the structure of state and the
inputs provided by parties, 2) an auxiliary contract ContractPay
that handles deposits and withdrawals, and 3) local behavior
for each party.

The update function UPay alone is somewhat more compli-
cated than the FPay functionality; in particular, while FPay uses
a single field representing the available balance of each party,
bali, the update function represents this as two fields, credi

and depositsi. This encoding is designed to cope with the fact
that FState only guarantees that auxiliary inputs are loosely
synchronized with the state updates. If multiple deposits are

Functionality FPay(PL, PR)

initially, balL := 0, balR := 0
on contract input deposit(coins($X)) from Pi :

within O(∆) rounds: bali += $X

on ideal input pay($X) from Pi :

discard if bali < $X
leak (pay, Pi, $X) to A
bali −= $X
within O(1) if P¬i is honest, or else O(∆) rounds:

bal¬i += $X
send (receive, $X) to P¬i

on ideal input withdraw($X) from Pi :

discard if bali < $X
leak (withdraw, Pi, $X) to A
bali −= $X
within O(∆) rounds:

send coins($X) to Pi

Fig. 6. Functionality model for a bidirectional off-chain payment channel.

received within a short timeframe, it may be that only the most
recent deposit is passed as input to UPay. So when ContractPay
receives a deposit of coins(x), we have it accumulate in a
monotonically increasing value, depositsi, that can safely be
passed to aux input. The state then includes credi as a
(possibly negative) balance offset, such that balance available
to Pi is depositsi + credi. In contrast, although the FState

functionality guarantees that each (non-⊥) auxiliary output is
eventually processed, they are not necessarily in order. Since
the FPay functionality makes similar guarantees, it is safe
to pass the wd{L,R} values directly to C.aux output. Since
parties’ inputs are not validated before being committed, we
have UPay clamp each party’s pay input to within the available
balance, and then clamp wd to the remaining balance after that.

For the protocol to be proven secure, it must precisely
match the interface of the ideal functionality. This includes
exhibiting the same “batching” behavior. The local protocol
translates pay and withdraw invocations into inputs of the
form (payi,wdi) passed to FState. Since FState accepts inputs
round by round, but FPay invocations may arrive at any time,
the local protocol must accumulate the total of payi and wdi

inputs until the next FState round begins. However, since
payments in FPay are delivered one at a time, rather than
batched, they must also be be delivered one at a time in the
protocol. We therefore include along with the total payi, a list
arri of the individual payment amounts.

In the appendix, we prove the following theorem:

Theorem 2. The ΠPay protocol realizes the FPay functionality
in the FState-hybrid world.

Update function UPay

UPay(state, (inputL, inputR), auxin) :

if state = ⊥, set state := (0, ∅, 0, ∅)
parse state as (credL, oldarrL, credR, oldarrR)
parse auxin as {depositsi}i∈{L,R}
for i ∈ {L, R}:

if inputi = ⊥ then inputi := (∅, 0)
parse each inputi as (arri,wdi)
payi := 0, newarri := ∅
while arri 6= ∅

pop first element of arri into e
if e+ payi ≤ depositsi + credi:

append e to newarri
payi += e

if wdi > depositsi + credi − payi: wdi := 0

credL += payR − payL − wdL
credR += payL − payR − wdR
if wdL 6= 0 or wdR 6= 0:

auxout := (wdL,wdR)

otherwise auxout := ⊥
state := (credL, newarrL, credR, newarrR)
return (auxout, state)

Auxiliary smart contract ContractPay(PL, PR)

Initially, depositsL := 0, depositsR := 0

on contract input deposit(coins($X)) from Pi :

depositsi += $X
auxin.send(depositsL, depositsR)

on contract input output(auxout):
parse auxout as (wdL,wdR)
for i ∈ {L, R} send coins(wdi) to Pi

Local protocol ΠPay for party Pi

initialize arri := ∅, payi := 0, wdi := 0, paidi = 0
provide (0, 0) as input to FState

on receiving state (credL, newL, credR, newR) from FState,
foreach e in newi:

output (receive, e)
paidi += e

provide (arri,wdi) as input to FState

arri := ∅
on input pay($X) from the environment,

if $X ≤ ContractPay.depositsi + paidi−payi − wdi:
append $X to arri
payi += $X

on input withdraw($X) from the environment,
if $X ≤ ContractPay.depositsi + paidi−payi − wdi:

wdi += $X

Fig. 7. Implementation of FPay in the FState-hybrid world (illustrated in
Figure 8(b)).

V. LINKED PAYMENTS FROM STATE CHANNELS

We wish to be able to route a payment from one party to
another across a path of intermediary payment channels that
connect them. The challenge is to ensure the collateral pro-
vided by intermediaries is returned to them within a bounded
time.

A. Modeling linked payment chains as an ideal functionality.

The ideal world, which serves as our formal security def-
inition, is illustrated in Figure 9(c). It essentially consists of
multiple instances of the duplex channels FPay, as well one
instance of a new linked payment functionality FLinked. Es-
sentially, the FLinked functionality interacts with the individual
FPay instances, accessing their state to implement conditional
payments and to ensure consistent behavior among them.

We first describe how FLinked models each conditional
payment. When a payment begins with open, FLinked reserves
a portion of PL’s balance in each FPay instance, advancing a
status symbol flag from init to pending. To reserve the bal-
ance, FLinked interacts with the individual FPay functionalities
directly, in a “white box” way, i.e. by directly manipulating the
bal{L,R} fields. If a channel on the path has insufficient balance,
then the payment is canceled. From the pending state, the
conditional payment must conclude (within bounded time) in
one of two ways, either cancel in which case the balance is
refunded to PL, or complete in which case it is paid to PR.
These transitions are summarized in Figure 10.

To guarantee that intermediaries do not lose money, we must
ensure that if any an outgoing conditional payment completes,
then the incoming payment also completes (for an honest
party). Consider a scenario where parties P1 through P` have
established `−1 payment channels, such that F i

Pay denotes the
payment channel established between Pi and Pi+1. It is easy
to check that the desired properties described earlier (Section
II-D) are exhibited by the functionality FLinked:
(Liveness): If all parties P1 through P` are honest, and if
sufficient balance is available in each payment channel, then
the chained payment completes successfully after O(`) rounds.
More specifically, for each of channel F i

Pay, the outgoing bal-
ance F i

Pay.balR is increased by $x and each incoming balance
F i

Pay.balL is decreased by $x. Also note that if the sender
and receiver, P1 and P`, are both honest then the payment
either completes or cancels atomically for both parties.2 More
precisely, after O(`+∆) rounds, either the payment completes
(the outgoing balance of P1 is decremented by $X and the
incoming balance of P` is incremented by $X), or else the
payment fails, and both parties balances remain unchanged.
(No counterparty risk): Even if some parties are corrupt,
then the honest parties on the path, i.e. P2 through P`−1

should not lose any money. More specifically, for each party
Pi, after a maximum of O(` + ∆) rounds, either the incom-
ing balance (F i−1

Pay .balR) is incremented by $X , or else the

2Note that no guarantees are provided to the sender and receiver if either
misbehaves. The payment is voluntary, so the sender could simply choose not
to make the payment in the first place. In future work we plan to provide a
mechanism for [35].

ContractPreimageManager

Environment

ContractState ContractState ContractState

ContractLinked ContractLinked ContractLinked

(a) Real World (“Smart Contracts” and
party-to-party communication)

FState(ULinked)

ContractPreimageManager

FState(ULinked)FState(ULinked)

Environment

ContractLinkedContractLinkedContractLinked

(b) Hybrid World (Smart contracts, plus
the generic “state channel” primitive)

FPay(P3,P4)

balL, balR

FStateChannel

FLinked($X, T, P1,P2,P3,P4)

FPay(P2,P3)

balL, balR

FPay(P1,P2)

balL, balR

Environment

(c) Ideal World

Fig. 8. Illustration of our main formalism: a construction of payment channels supporting “atomic” chaining (the ideal world, (c)), using a system of Ethereum
smart contracts (the real world, (a)). Our construction is modular (b), using a general-purpose “state channel” functionality, FState, which is of independent
interest (Section IV).

Functionality FLinked($X,T, P1, ..., P`)

initially, for each i ∈ 1...(`− 1), set flagi := init ∈
{init, inflight, complete, cancel}

on receiving (open, i) from A, if flagi = init, then
if F i

Pay.balL ≥ $X then:
F i

Pay.balL −= $X
set flagi := inflight

otherwise, set flagi := cancel

on receiving (cancel, i) from A, if at least one party is
corrupt and flagi ∈ {init, inflight},

if flagi = inflight then set F i
Pay.balL += $X

set flagi := cancel

on receiving (complete, i) from A, if flagi = inflight,
F i−1

Pay .balR += $X
set flagi := complete

after time T + O(` + ∆), or after T + O(`) if all
parties honest, raise an Exception if any of the following
assertions fail:

1) for each i ∈ 1...(`−1), flagi must be in a terminal state,
i.e., flagi ∈ {cancel, complete}

2) for each i ∈ 1...(`− 2), if Pi is honest, it must not be
the case that (flagi, flagi+1) = (cancel, complete).

3) if P1 and P` are honest, then (flag1, flag`−1) ∈
{(complete, complete), (cancel, cancel)}

Fig. 9. Definition of the chained-payment functionality

outgoing balance (F i
Pay.balL) is returned to its initial state.

First, notice that flag := cancel can only occur if some

init
pending

completecomplete

cancel

balL -= $X balR += $X

balL += $X

Fig. 10. State transitions and side effects in FLinked (for each channel FiPay.
Within O(` + ∆) rounds, a terminal state is reached.

parties are corrupted, or if the channel balance is insufficient.
Furthermore, notice that assertion 2 ensures that honest parties
do not lose money. Finally, notice that the individual FPay

payment channels continue operating “as normal” even while
the linked payment is in progress, i.e. parties can also send
(unconditional) payments to each other in the meantime, as
well as deposit and withdraw on-chain funds, up to the
available amount. 3

B. Instantiating linked payments

As with our construction for FPay, our construction FLinked

consists of an update function ULinked that specializes FState,
as well as auxiliary contracts and local behavior for each party
(see appendix Figure 15). We focus our discussion on the
update function and auxiliary contracts as shown in Figure 11
.

The update function ULinked is an outer layer around the UPay

function (Figure 7), but extends state to include support for
a conditional payment, mirroring the status flag in the FLinked

functionality. The left-hand party for each channel PL, creates
a conditional payment by sending an open(h) instruction to
FState, where h is the hash of a (possibly unknown) secret.
Each conditional payment can be concluded in one of three
ways: by a complete instruction from PL, a cancel message

3To generalize the functionality, we would use a generic composition
operator to construct an ideal world where many instances of FLinked can exist
simultaneously, and be brought into existence by parties on demand. To satisfy
the composition theorem, we would need to ensure that multiple payment
chains are prevented from interfering with each other, e.g. by replaying
messages. We elide over these issues.

from PR, or through a dispute case, which can occur only if
one of the two parties fails, as we describe shortly.

To establish a chain of linked payments, the initial sender
P1 first creates a secret x, shares with the recipient P`,
and creates an outgoing conditional payment to P2 using
h = H(x). Each subsequent party Pi in turn, upon receiving
the incoming conditional payment, establishes an outgoing
conditional payment to Pi+1. Once the recipient P` receives
the final conditional payment, it multicasts x to every other
party.

The key challenge is to ensure that if an honest party’s
outgoing conditional payment completes, then its incoming
conditional payment must also complete. In the dispute

case, whether the conditional payment is canceled or re-
funded depends on the state of the global preimage manager,
ContractPM, which acts like a global condition: if the preimage
manager contract receives x before time TExpiry, then every
conditional payment that is disputed will complete; otherwise,
every disputed conditional payment will cancel. Therefore, if
an honest party receives x before time TExpiry −∆, it is safe
to complete their outgoing conditional payment, since in the
worst case they will be able submit x to ContractPM and claim
their incoming payment via dispute.

In the Appendix we give a security proof that ΠLinked

realizes the ideal world (FLinked,FPay). Here we just remark
on the three scenarios the protocol is designed to handle. First,
it is possible that parties receive inconsistent values of h. But
since each party creates an outgoing conditional payment with
h′ only after receiving an incoming conditional payment with
the same hash h′, their balance is preserved regardless. Second,
note that the ideal functionality permits for some conditional
payments to complete while others cancel, but only in ways
that do not harm honest parties (only corrupted parties may
lose money). Finally, we note that in the optimistic case,
when all parties are honest and thus all payment conditional
payments complete, the ContractPM is never invoked at all.

VI. SIMULATING PAYMENT CHANNEL NETWORKS

In our Sprites construction we optimize the locktimes and
collateral costs in payment channels. We hypothesize that
Sprites will lead to better performance in a real system
(especially if under attack) because more collateral will be
unlocked and available to route payments. To estimate the
impact overall system performance, i.e., payment throughput,
we developed a simulation framework to model Lightning and
Sprites payment channels in various network configurations.
We generate synthetic network topologies based on two mod-
els, scale-free and small-world, similar to how Prihodko et
al [50] evaluated the Flare routing scheme; in fact, in the
Appendix we present a reproduction of their experiment to
validate our framework. Our simulation also relates to that
of Moreno-Sanchez et al. [39], [38], although they use data
from the Ripple network rather than synthetic topologies. They
also feature an alternative routing protocol which we leave for
future work.

Protocol ΠLinked($X,T, P1, ...P`)

Let TExpiry := T + 6`+ ∆.
Let TCrit := TExpiry −∆ // Last chance to submit x
Let TDispute := TExpiry + ∆ + 3.

Update Function ULinked,$X(state, inL, inR, auxin)
if state = ⊥, set state := (init,⊥, (0, 0))
parse state as (flag, h, (credL, credR))
parse ini as (cmdi, in

Pay
i), for i ∈ {L, R}

if cmdL = open(h′) and flag = init, then
set credL −= $X , flag := inflight, and h := h′

otherwise if cmdL = complete and flag = inflight,
set credR += $X , and flag := complete

otherwise if cmdR = cancel and flag = inflight,
set credL += $X and flag := cancel

otherwise if cmdR = dispute or cmdL = dispute, and
flag = inflight, and current time > TExpiry, then

auxout := (dispute, h, $X) and flag = dispute

let statePay := (credL, credR)
(auxPayout , statePay) := UPay(statePay, inPay

L , inPay
R , auxin)

set state := (flag, h, statePay)
return (state, (auxout, auxPayout))

Auxiliary contract ContractLinked
Copy the auxiliary contract from Figure 11, renaming the
output handler to outputPay

on contract input output(aux∗out):
parse auxout as (auxout, auxPayout)
if aux∗out parses as (dispute, h, $X) then

if PM.published(TExpiry, h), then
depositsR += $X

else
depositsL += $X

auxin := (depositsL, depositsR)

invoke outputPay(auxPayout)

Global Contract ContractPM
initially timestamp[] is an empty mapping
on contract input publish(x) at time T :

if H(x) /∈ timestamp: then set timestamp[H(x)] := T

constant function published(h, T ′):
return True if h ∈ timestamp and timestamp[h] ≤ T ′
return False otherwise

Fig. 11. Smart contract for protocol ΠLinked that implements linked payments
(FLinked,FPay) in the FState-hybrid world. See Appendix (Figure 15) for local
behavior.

a) Topology formation: It remains to be seen what pay-
ment channel nework topologies will emerge in practice. In our
simulation, we consider two commonly used topology models,
scale-free networks and small-world networks. A small-world
network is a graph where the average path length between

(a) Scale Free (BA) (b) Small World (WS)

Fig. 12. Effect of petty attacks on transaction throughput (@98% success
rate), under varying configurations of payment channel networks.

nodes is short, at most O(logN). A scale-free network is
one where the degree distribution is given by the power
law [6]. Scale-free networks are also small world, but in
particular feature high-degree hubs. The Barabási-Albert (BA)
model [1] is an algorithm for generating a scale-free network,
while the Watts-Strogatz (WS) model [43] is an algorithm
for generating small world networks that are not scale free.
Roughly speaking, BA models a more centralized network
because of the influence of large hubs. For our experiment
we generate random undirected graphs of 2,000 nodes using
the BA and WS algorithms. We also assign to each node a
network latency; based on estimates from measurements of
the Bitcoin network conducted by Neudecker et al. [42],4 we
sample so that 92.5% of nodes have 100ms latency, 4.9% have
1 second latency, and 2.6% have 10 second latency.

b) Generating payment requests: To generate distribu-
tions of payments, we make use of an anonymized dataset of
credit card transactions provided to us by a bank. The dataset
consists of four million transactions, made by approximately
50,000 unique cardholders (identified only by random labels),
over a six month period (from Dec 2016 to May 2017). We
assign attributes to each node by independently sampling from
distributions as follows. We label each node as either a “con-
sumer” with probability 1/3 or “merchant” with probability
2/3, as there are twice as many merchants as consumers in our
anonymized dataset. We assign an initial payment channel ca-
pacity to each edge by sampling from a bi-modal distribution,
either “High” ($800) with probability 0.2 or “Low” ($50) with
probability 0.8. We assign each consumer node a transaction
value mean and variance by sampling from the anonymized
dataset. Finally, we assign a “spend frequency” (resp. “receive
frequency”) to each consumer node (resp. merchant node) by
sampling from the anonymized dataset. To create a payment
request, we sample a consumer node at random (weighted
by its spend frequency) as the sender, and a merchant node
(weighted by receive frequency) as the recipient. For the
transaction amount, we sample from a normal distribution with
using the mean and variance associated with the sender node.

4The latency captured by Bitcoin network measurements from Neudecker
et al. [42] includes internet latency as well as Bitcoin-specific transaction
relaying behavior.

(a) Scale Free (BA) (b) Small World (WS)

Fig. 13. Effect of petty attacks on transaction duration (@98% success rate),
under varying configurations of payment channel networks.

c) Route finding: For each payment request, we attempt
to find a route using one of two algorithms: 1) Flare (F) [50] is
a decentralized DHT-like route finding protocol, that requires
only local information and interaction between nodes. See the
appendix for more background on Flare. 2) Shortest Path (SP)
models an idealized central party that uses global information
to determine the overall shortest path. In future work we
plan to evaluate landmark routing [38] as well, which we
hypothesize would be a middle ground between these two. If a
suitable path cannot be found, we count the payment attempt
as a failure.

d) Evolution: Our simulation keeps track of the balance
and pending conditions in each payment channel, updating
them tick by tick (each tick represents 1 second of real time).
When a route is found, a new conditional payment is opened
on each channel immediately (that is, we model the “open”
command as completing instantaneously). Each payment chan-
nel supports potentially many concurrent in-flight payments,
as long as the channel has sufficient balance. For each in-flight
conditional payment, the “complete” commands propagate one
hop at a time, where the time to complete each hop is based
on the node’s network latency.

e) Rebalancing: Since each payment originates at a
consumer (a source), and terminates at a merchant (a sink), the
payment channels become unbalanced over time. We model
on-chain rebalancing behaviour as follows: at each tick (every
10 seconds) every node checks if it has low balance channels
(less than $20, the maximum size of one payment) and if so
creates an on-chain transaction to replenish their funds evenly
across their channels. In the incremental deposits (No Inc.)
setting, only the amount to rebalance is locked for an ∆ period,
while otherwise (No Inc.) the entire channel is paused for ∆.
We also model Revive [24] off-chain rebalancing (Revive).
Every three ticks (30 seconds), we adjust the channel balances
to minimize the difference between incoming and outgoing
balances along each, effectively unwinding any credit cycles in
the network. We model off-chain rebalancing as instantaneous
though in reality it would incur some delay.

f) Modeling “petty” attacks: The main benefit of the
Sprites technique is to provide a better worst-case delay. We

therefore evaluate an attack scenario where the attacker’s goal
is to reduce transaction throughput. We let the attacker control
a varying fraction 0 ≤ β ≤ 0.5 of the network. The attacker
follows a “petty” strategy, delaying state-channel messages
until the last possible moment.

g) Quantifying throughput: We are especially interested
in the maximum attainable throughput enabled by payment
channel networks. To establish a normalized baseline across
configurations, we first identify the maximum throughput such
that at least 98% of transaction attempts succeed; that is,
we increase the payment generation rate until the simulation
reaches a steady state where 2% of payment attempts fail.

h) Results: In Figure 12 we show the results of running
our simulation for several different configurations. We We
varied several parameters, namely incremental deposits, and
constant locktime (S) vs lightning (L), all at varying levels of
petty attacker. We then report the rate of successful transac-
tions per second. (at 98% success). The PettyRate = 0 case
is our baseline, from which we determined the request rate at
which 98% of payment attempts succeed.

In every scenario, incremental deposits improves the attain-
able throughput by over 3.2% in the BA network, and over
11.5% in the WS network. We also find that Revive appears
to have minimal effect, presumably because credit cycles do
not often form.

We next consider the extent to which a malicious attack
could disrupt the throughput of the payment channel network.
We also see that in every case, the use of constant locktimes
effectively mitigates the harm caused by petty attackers. When
half the network is petty PettyRate = 0.5, the Sprites model
sustains 88.7% (for BA) of its baseline throughput and 76.8%
(for WS), whereas Lightning drops to at best 60.9% for BA
and 22.7% for WS. We can explain this by the average duration
of payment requests, as shown in Figure 13. Under increasing
petty attacks, many transactions are routed through paths that
include a petty attacker, leading to longer transaction times
and less available collateral. Finally, we note that in all cases,
the relative improvement of Sprites vs Lightning is more
pronounced in the more decentralized small world (WS) model
rather than the more centralized scale free model (BA).

VII. DISCUSSION AND CONCLUSION

Cryptocurrencies face several ongoing challenges: they must
scale up to accommodate increasing user demand, and they
must compete with centralized alternatives. Our construction
of Sprites embodies two novel insights that improve the
achievable throughput and worst-case collateral costs com-
pared to Lightning [49], the current state-of-the-art design.
Furthermore, we show through simulation experiment that the
improvements in Sprites have a greater impact for decentral-
ized topologies and routing algorithms. Our work therefore
directly supports a more decentralized payment channel net-
work.

We now outline several further questions for future work.

a) Feasibility of constant locktimes in Bitcoin: Our con-
stant locktimes construction relies on a global contract mech-
anism, which is easily expressed in Ethereum, but cannot (we
conjecture) be emulated in Bitcoin without some modification
to its scripting system. Are there minimal modifications to
Bitcoin script that would enable constant locktimes?

b) Privacy: As we have focused on collateral costs as
our key performance objective, our constructions and security
definitions do not aim to ensure transaction privacy. Our work
is therefore complementary to efforts that focus primarily on
privacy [19], [20], [33], [8]. We believe our state channel
abstraction can serve as a convenient building block for this
important future work.

c) Concurrent Conditional Transfers: Concurrency in
payment channels has been explicitly studied by Malavolta
et al. [33]. For simplicity, our functionality model FLinked

expresses only a single conditional transfer; it would be
straightforward to extend this to multiple concurrent payments.
We have included this feature in our proof of concept imple-
mentation in Ethereum, found in the Appendix.

d) Supporting fees: Participants who act as intermedi-
aries in a payment path contribute their resources to provide a
useful service to the sender and recipient. The intermediaries’
collateral is tied up for the duration of the payment, but the
sender and recipient would not be able to complete their
payment otherwise. Therefore the sender may provide a fee
along with the payment, which can be claimed by each
intermediary upon completion of the payment. To achieve
this, each conditional payment along the path should include
a slightly less amount than the last; the difference can be
pocketed by the intermediary upon completion. The following
example provides a $1 fee to each intermediary, P2 and P3.

P1
$X+2−−−−−−−−−−→

PM[h,TExpiry]
P2

$X+1−−−−−−−−−−→
PM[h,TExpiry]

P3
$X−−−−−−−−−−→

PM[h,TExpiry]
P4

e) Fair Exchange of Invoices: McCorry et al proposed
that the widely used Payment Protocol standard, BIP70, should
be revised to include digitally signed invoices [35] from
the merchant (i.e. the payment acknowledgement message).
We highlight that payment protocols such as BIP70 can be
supported in Sprites and that it is feasible to fairly exchange
a merchant’s invoice for the customer’s payment using the
conditional transfers. The merchant would sign an invoice that
includes the hash h = H(x), and send this invoice to the
customer. The customer creates a conditional transfer such
that the merchant can receive these coins if the preimage x is
revealed. Finally, the merchant reveal x to complete the Sprites
payment.

REFERENCES

[1] Réka Albert and Albert-László Barabási. Statistical mechanics of
complex networks. Reviews of modern physics, 74(1):47, 2002.

[2] Ian Allison. Ethereum’s vitalik buterin explains how state channels
address privacy and scalability, 2016. http://www.ibtimes.co.uk/
ethereums-vitalik-buterin-explains-how-state-channels-address-
privacy-scalability-1566068.

http://www.ibtimes.co.uk/ethereums-vitalik-buterin-explains-how-state-channels-address-privacy-scalability-1566068
http://www.ibtimes.co.uk/ethereums-vitalik-buterin-explains-how-state-channels-address-privacy-scalability-1566068
http://www.ibtimes.co.uk/ethereums-vitalik-buterin-explains-how-state-channels-address-privacy-scalability-1566068

[3] anonymized. Sprites and state channels: Payment networks
that go faster than lightning (anonymized full online version).
https://github.com/7f434ba0bec3/BmyTgxxT/blob/ba82893/oakland18-
paper169-extended.pdf.

[4] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory
Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter
Wuille. Enabling blockchain innovations with pegged sidechains, 2014.

[5] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas.
Bitcoin as a transaction ledger: A composable treatment. IACR Cryp-
tology ePrint Archive, 2017:149, 2017.

[6] BY ALBERT-LÁSZLÓ Barabási and Eric Bonabeau. Scale-free. Sci-
entific American, 288(5):50–59, 2003.

[7] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair
protocols. In Crypto (2), pages 421–439, 2014.

[8] Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instanta-
neous decentralized poker. Asiacrypt (to appear) https://arxiv.org/abs/
1701.06726, 2017.

[9] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,
Joshua A. Kroll, and Edward W. Felten. Research Perspectives and
Challenges for Bitcoin and Cryptocurrencies. In S&P, 2015.

[10] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS, 2001.

[11] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.
OSDI, 1999.

[12] Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao, Ian
Miers, and Pratyush Mishra. Decentralized anonymous micropayments.
In Eurocrypt, 2017.

[13] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,
Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gun
Sirer, Dawn Song, and Roger Wattenhofer. On scaling decentralized
blockchains. In Financial Cryptography 3rd Bitcoin Workshop, 2016.

[14] Christian Decker and Roger Wattenhofer. A fast and scalable payment
network with bitcoin duplex micropayment channels. In Symposium on
Self-Stabilizing Systems, pages 3–18. Springer, 2015.

[15] Johnny Dilley, Andrew Poelstra, Jonathan Wilkins, Marta Piekarska,
Ben Gorlick, and Mark Friedenbach. Strong federations: An inter-
operable blockchain solution to centralized third party risks. CoRR,
abs/1612.05491, 2016.

[16] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Mali-
nowski. Perun: Virtual payment channels over cryptographic currencies.

[17] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin
backbone protocol: Analysis and applications. In Eurocrypt, 2015.
http://eprint.iacr.org/2014/765.

[18] Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and Ke Yang.
Resource fairness and composability of cryptographic protocols. J.
Cryptology, 24(4):615–658, 2011.

[19] Matthew D. Green and Ian Miers. Bolt: Anonymous payment channels
for decentralized currencies. IACR Cryptology ePrint Archive, 2016:701,
2016.

[20] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro,
and Sharon Goldberg. Tumblebit: An untrusted bitcoin-compatible
anonymous payment hub. Technical report, Cryptology ePrint Archive,
Report 2016/575, 2016.

[21] Emin Gun Sirer Ittay Eyal, Adem Efe Gencer and Robbert van Renesse.
Bitcoin-NG: A scalable blockchain protocol. In NSDI, 2016.

[22] Nick Johnson. Upgradeable contracts, 2016. https://gist.github.com/
Arachnid/4ca9da48d51e23e5cfe0f0e14dd6318f.

[23] J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable
synchronous communication. In TCC, pages 477–498, 2013.

[24] Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain
payment networks. ACM CCS (to appear), 2017. http://eprint.iacr.org/
2017/823.

[25] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust
multi-party computation using a global transaction ledger. In Eurocrypt,
2015.

[26] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail
Khoffi, Linus Gasser, and Bryan Ford. Enhancing bitcoin security and
performance with strong consistency via collective signing. In USENIX
Security Symposium, 2016.

[27] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. In 2016 IEEE Symposium on Security and Privacy (S&P),
2016.

[28] R. Kumaresan, T. Moran, and I. Bentov. How to use bitcoin to play
decentralized poker. In CCS, 2015.

[29] Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize
correct computations. In CCS, 2014.

[30] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation
with penalties. In CCS, 2016.

[31] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasude-
van. Improvements to secure computation with penalties. In CCS, 2016.

[32] Loi Luu, Viswesh Narayanan, Kunal Baweja, Chaodong Zheng, Seth
Gilbert, and Prateek Saxena. SCP: A computationally-scalable byzantine
consensus protocol for blockchains. In CCS, 2016.

[33] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei,
and Srivatsan Ravi. Concurrency and privacy with payment-channel
networks, 2017.

[34] Patrick McCorry, Ethan Heilman, and Andrew Miller. Atomically
trading with roger: Gambling on the success of a hardfork. In Data
Privacy Management, Cryptocurrencies and Blockchain Technology,
pages 334–353. Springer, 2017.

[35] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. Refund attacks
on bitcoins payment protocol. In Financial Cryptography, 2016.

[36] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. A smart
contract for boardroom voting with maximum voter privacy. In Financial
Cryptography, 2017.

[37] Andrew Miller. Provable Security for Cryptocurrencies. PhD thesis,
University of Maryland, College Park, 2016.

[38] Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Silentwhis-
pers: Enforcing security and privacy in decentralized credit networks.
2017.

[39] Pedro Moreno-Sanchez, Tim Ruffing, and Aniket Kate. Pathshuffle:
Mixing credit paths for anonymous transactions in ripple. Proceedings
on Privacy Enhancing Technologies, 3, 2017.

[40] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller,
and Steven Goldfeder. Bitcoin and Cryptocurrency Technologies: A
Comprehensive Introduction. Princeton University Press, 2016.

[41] Raiden Network. http://raiden.network/, 2015.
[42] Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein. Timing

analysis for inferring the topology of the bitcoin peer-to-peer network.
In Ubiquitous Intelligence & Computing, Advanced and Trusted Com-
puting, Scalable Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Congress (UIC/ATC/S-
calCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Conferences, pages
358–367. IEEE, 2016.

[43] Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. Random
graphs with arbitrary degree distributions and their applications. Physical
review E, 64(2):026118, 2001.

[44] Tier Nolan. Alt chains and atomic transfers. bitcointalk.org, May 2013.
[45] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain

protocol in asynchronous networks. In Eurocrypt, 2017. http://
eprint.iacr.org/2016/454.

[46] Rafael Pass and Abhi Shelat. Micropayments for decentralized curren-
cies. In 22nd CCS, 2015.

[47] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in
the permissionless model. Cryptology ePrint Archive, Report 2016/917,
2016. http://eprint.iacr.org/2016/917.

[48] Dennis Peterson. Sparky: A lightning network in two pages of solid-
ity. http://www.blunderingcode.com/a-lightning-network-in-two-pages-
of-solidity.

[49] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain
instant payments. 2016. https://lightning.network/lightning-network-
paper.pdf.

[50] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy,
and Olaoluwa Osuntokun. Flare: An approach to routing in lightning
network. Whitepaper. http://bitfury.com/content/5-white-papers-
research/whitepaper flare an approach to routing in lightning
network 7 7 2016.pdf, 2016.

[51] Jeremy Spilman. Anti dos for tx replacement. https:
//lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/
002433.html, 2013.

https://github.com/7f434ba0bec3/BmyTgxxT/blob/ba82893/oakland18-paper169-extended.pdf
https://github.com/7f434ba0bec3/BmyTgxxT/blob/ba82893/oakland18-paper169-extended.pdf
https://arxiv.org/abs/1701.06726
https://arxiv.org/abs/1701.06726
http://eprint.iacr.org/2014/765
https://gist.github.com/Arachnid/4ca9da48d51e23e5cfe0f0e14dd6318f
https://gist.github.com/Arachnid/4ca9da48d51e23e5cfe0f0e14dd6318f
http://eprint.iacr.org/2017/823
http://eprint.iacr.org/2017/823
http://raiden.network/
bitcointalk.org
http://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/917
http://www.blunderingcode.com/a-lightning-network-in-two-pages-of-solidity
http://www.blunderingcode.com/a-lightning-network-in-two-pages-of-solidity
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html

APPENDIX

A. Ideal Functionalities and Simulation Based Security

Our formalism for Sprites is founded on the simulation-
based security framework (in particular Universal Compos-
ability (UC) [10]) which is a general purpose framework for
modelling and constructing secure protocols. We now give

a) Notes on the Blockchain Model: We use the typical
idealized model of a Bitcoin-like blockchain [27], [29], [28],
[28] as described below. For our purposes, a blockchain
functions as a shared public database. Any party can write
to the blockchain by submitting a “transaction,” which prop-
agates throughout the network and is eventually committed
into a consistent ordered log. Every party can view all the
transactions committed on the blockchain; however, the views
are only approximately synchronized. If one party’s view com-
prises the sequence txs1 and another party’s view comprises
the sequence txs2, then it must be that txs1 is a prefix of
txs2 or vice-versa. Furthermore, if any party’s view includes
a transaction tx, then every party’s view will also include tx
after a maximum time bound. To simplify matters, we consider
a single time bound, ∆, which bounds the maximum delay
“round-trip” time for a blockchain transaction: if some party
submits a transaction tx at time T , then every party sees tx
confirmed by time T + ∆.

b) Smart contract programming conventions: We make
use of smart contract programming conventions in our con-
struction, inspired by those implemented in Ethereum. Smart
contracts are processes running in the blockchain database that
accept input via user-submitted transactions. Smart contracts
can be trusted to execute correctly, but do not provide any
inherent privacy; the adversary also has the opportunity to
reorder and front-run user-submitted inputs.

We make use of several conventions based on features
typically found in smart contract programs. Smart contracts
have access to a clock (i.e. a “block number”) which is
approximately synchronized (i.e., to within ∆) of the honest
parties. We also assume that the smart contract execution
environment provides a built-in notion of coins, which can be
transferred (conserving total balance) between contracts and
parties. Contracts can also emit events as a way of notify-
ing parties. A party receives the event when the transaction
triggering that event is confirmed by multiple blocks in the
blockchain.

c) Universal Composability: Universal Composabil-
ity [10] is formally defined in an execution model involving
a system of interactive Turing machines (ITMs). ITMs are
defined in a reactive style, by describing how to behave upon
receiving a message; the resulting behavior includes modifying
a local state, and sending a message to another ITM process.
The UC execution model involves several kinds of processes:
an environment, Z , which represents the “external world” and
chooses the inputs given to each party and observes the out-
puts; parties that follow a given protocol Π, and an Byzantine
adversary A that controls corrupted parties. The model also
includes functionalities, F, which act like idealized trusted

third parties. A functionality serves as the target specification;
the “ideal world” contains a functionality that exhibits all the
intended properties of the protocol. A functionality in the “real
world” is also used to represent network primitives and setup
assumptions. A proof in this framework takes the form of a
simulator, which translates every attacker A in the real world
into a simulated attacker SA in the ideal world, such that the
two worlds are indistinguishable to the environment; in other
words, the real world is just as good as the ideal world. We
denote by execReal(Z,Π,A) the output of Z following its
interaction with A and the honest parties in an execution of
Π in the real world, and we denote by execIdeal(Z,F,SA)
the output of Z following an execution of F with SA and the
honest parties in the ideal world. Thus, we say that protocol Π
in the real world realizes functionality F in the ideal world if
the distributions execReal(Z,Π,A) and execIdeal(Z,F,SA)
are indistinguishable.

The simulation based security framework supports modular
composition: we can build a protocol that emulates an inter-
mediate functionality FHybrid in the real world, and then build
a high-level protocol that makes use of FHybrid to realize the
target functionality F. The composition theorem guarantees
that we can make this substitution.

d) SIDs: In UC, each functionality is associated with a
unique string, called the session ID (SID). The SID is essential
for the composition theorem, as it ensures that concurrent
instances of protocols are kept separate from each other. The
practical significance of the session ID is that it is implicitly
used as a tag for signatures and hashes to ensure that messages
from one protocol instance cannot be replayed in another.
To reduce clutter, we elide the handling of SIDs from our
presentation.

e) Smart contracts and functionalities: We define exper-
iments with multiple ideal functionalities as well as “con-
tract” processes, which represent programs running on the
blockchain network. Our ideal functionalities are round-based,
refer to [23], [18], [27] on how to modify the UC framework
to support a synchronous network model with a computation
that proceeds in rounds. We treat the contracts as ideal
functionalities too, which are available to protocols in our “real
world” (i.e., the starting assumption for our work is that we
have access to a blockchain primitive) following prior works
using formal framework to capture the blokchain model [27],
[7], [28], [17], [45]. The notion of multiple functionalities
is compatible with UC — that is, the functionalities can be
considered as a single combined functionality. For example,
the inputs provided to two ideal functionalities F1,F2 at the
start of the kth round will determine their joint output at the
end of the kth round.

f) Delayed tasks: Frequently in our ideal functionalities,
we use the notation “within {R} rounds: { Task }”. This
is intended to guarantee that the pseudocode described by
Task is executed within a bounded time, but the exact time
when it is executed is under the control of the adversary. This
mechanism is compatible with the traditional UC paradigm;
we can imagine implementing a “task queue” mechanism

within the functionality.
g) Exceptions in Ideal Functionalities: To simplify our

ideal functionality FLinked, we allow the functionality to raise
an exception. Raising an exception immediately sends an
Exception message to the environment. Since in the real
world there is no such mechanism for raising an exception,
5 this would clearly allow the environment to distinguish
between the real and ideal worlds. Therefore in our security
proof we have the obligation of showing that the simulator we
construct never triggers an exception.

B. Simulation-based Security Proof for Payment Channels

We now explain how to prove that the protocol ΠPay

realizes the ideal payment channel functionality FPay in the
FState-hybrid world. In the hybrid world, parties run the
local protocol, exchanging point-to-point messages as well
as interacting with the FState(ULinked) functionality and the
ContractLinked smart contract. In the ideal world, the parties
simply communicate with FPay. The security proof consists
of a simulator S that translates every behavior in the hybrid
world (Figure 14 Left) into an indistinguishable behavior in
the ideal world (Figure 14 Right).

The simulator we construct is deterministic, and ensures
that the hybrid world and ideal world are exactly identical
in the view of the environment Z . In Figure 14 we illustrate
the case where party PL is corrupted. We use color coding to
denote the different types of messages. The simulator runs a
copy of the hybrid world “in its head,” which it maintains in
exact correspondence. Interactions between Z and corrupted
PL (red) in the hybrid world take the form of instructions
to the dummy adversary to pass through to the hybrid world
functionality FState. Inputs to the honest party PR correspond
to inputs accepted by the ideal functionality, FPay, since these
are passed through by the ideal protocol. Since FPay leaks
these immediately to the simulator, the simulator passes these
on to the instance of ΠPay it runs.

Per Cannetti [10], it suffices to construct a simulator S
for the dummy adversary (i.e., the hybrid world adversary
that simply follows instructions from the environment). Since
the model does not provide any secrecy, and since the
FState-hybrid world hides any cryptography, the simulation is
information-theoretic and deterministic. The simulator runs a
local sandboxed execution of ΠPay, which it keeps in perfect
correspondence with the state of FPay. When the environment
asks A to command corrupted parties to interact with and
observe FState, the simulator S routes these requests to its
sandboxed ΠPay. We can show that the sandboxed execution
of ΠPay maintained by S is identical to ΠPay in the hybrid
world.

Theorem 3. The ΠPay protocol in the FState-hybrid world
realizes the FPay ideal functionality.

Proof. (Sketch) Let us assume that Pi is corrupt and P¬i is
honest. The ideal world simulator S for the dummy hybrid

5Assertions in smart contracts, such as Figure 16 cause the activation to be
discarded, without notifying the environment.

world adversary runs a sandboxed execution of ΠPay through
which it relays instructions as described below:

Inputs from honest parties. When the simulator S receives
a message of the form (pay, Pi, $X) from FPay, it pro-
vides an input pay($X) to Pi in the sandboxed execution
of ΠPay; when S receives (withdraw, Pi, $X), it inputs
withdraw($X).

Contract inputs. If A instructs Pi to send deposit($X)
to ContractPay, S simulates Pi to send deposit($X) to the
sandboxed ContractPay, and translates the O(∆)-delayed task
of FState to an O(∆)-delayed task for FPay.

Message delivery in FState. When the environment asks to
execute a delayed task in FState (i.e., to advance auxin or to
apply a state update), S routes this request to ΠPay. If the
sandboxed FState provides output state to a corrupted party,
pass state to the environment.

Outputs to honest parties. If honest party P¬i in the sand-
boxed FState provides output (receive, $X), then deliver the
delayed task in FPay that sends the same output to P¬i in the
ideal world.

The view that S constructs is identical to that of the hybrid
world, because the credit of each Pi in the hybrid world
is kept in lockstep with bali of FPay in the ideal world.
Specifically, the “while” loop of UPay delivers each payment
to the ideal FState by updating its state in the same order
that payments will be received by the ideal FPay. This allows
S to schedule payments in the ideal world within O(1) or
O(∆) rounds, so that Z will be able to observe each event
(e.g., by inspecting the output of the honest P¬i) at exactly
the same round in which the event occurred in the hybrid
world. During each virtual round of FState, the execution of
ΠPay by the honest P¬i will thus correspond to the behavior of
P¬i in the ideal world, since the variables in the comparison
$X ≤ ContractPay.depositsi + paidi−payi − wdi are up-to-
date and any new payments that SA scheduled would arrive
only in the next virtual round.

C. Details of the Linked Payments Construction

In the body of the paper (Section IV) we presented the
update function and auxiliary smart contracts (Figure 11) for
the state channel protocol ΠLinked. In Figure 15 we define the
local behavior of the parties.

We now state and provide a proof sketch of our main
theorem for FLinked.

Theorem 4. Protocol ΠLinked realizes FLinked functionality in
the FState-hybrid world.

Proof. (Sketch) The ideal world simulator S for the dummy
real world adversary runs a sandboxed execution of ΠLinked

through which it relays instructions while faithfully simulating
honest parties exactly as described in ΠLinked. Note that in the
simulation, S would act both as FState. While S itself has
quite a rich interface via FLinked, the crux of the proof will be
in proving that during the course of this interaction, FLinked

never raises an Exception.

Simulator

Real World Ideal World

Z

FState(UPay)

- input(vr,i)

PR

FPay

- withdraw($x)
- pay($x)

DummyL

Ideal2

Z

CPay

- deposit($X)
- output(wdL,wdR)

DummyL

FPay Inputs
 withdraw($X)
 pay($X)

Inputs leaked to
SimulatorFState Inputs:

vr,i = (arri, wdi)

FState Outputs:
(credL,newL ,
credR, newR)

FPay Outputs:
 receive($X)

aux_out

FState(UPay)

- input(vr,i)

CPay

- deposit($X)
- output(wdL,wdR)

aux_out

PR

FPay scheduled
events triggered by
simulator

Fig. 14. Illustration of the simulator-based proof for ΠPay for corrupted PL (the corrupted PR case is symmetric.

Proposition 5. For each i ∈ 1...(` − 1), flagi must be in
a terminal state, i.e., flagi ∈ {cancel, complete} at time
T + O(` + ∆) (or at time T + O(`) when all parties are
honest).

Proof sketch. First we consider the case when all parties are
honest (and each party has sufficient balance). In this case, the
sender P1 starts a fresh round on its state channel (with P2)
where it presents h ← H(x) for a randomly chosen x. Note
that P1 also sends x to P`. Observe that the flag variable
on F1

State state channel will be set to inflight, following which
(honest) party P2 would start a fresh round on its state channel
with P3 where it simply forwards h that it received from
F1

State. This process repeats until it is P`’s turn where P`

multicasts the preimage x that it received from P1. Then,
each (honest) party Pi simply passes a complete command
to F i

State Note that each of these steps take one time step.
Therefore, the whole protocol completes within `+2 time steps
(all off-chain), i.e., by time T + O(`). Furthermore, each of
the flag variables flagi would be in a terminal state complete.

When not all parties are honest, then it is possible that F i
State

might receive a cancel command from corrupt Pi. In this
case, the cancel command is propagated all the way back to
P1 by the honest parties. In this case, all the local flag variables
in F i

State are set to cancel and P1 ends getting its deposit
back. Note that the cancel event is confirmed on the on-chain
auxiliary contract. Since this is settled on-chain, we incur an
additional ∆ delay. One final scenario is when each F i

State is
set to inflight (i.e., in the forward path), and P` revealed the
preimage but a corrupt party does not agree to the update off-
chain. Once again, the state channel synchronization process
escalates to the on-chain contract where this will be settled,
and the flag variables will be set in this case to complete.
Note that the on-chain escalation will induce an additional
∆ delay (but this happens in parallel for each state channel

instance) and therefore the proposition holds in this case as
well. This concludes the proof of the proposition.

Proposition 6. For each i ∈ 1...(`−2), if Pi is honest, it must
not be the case that (flagi, flagi+1) = (cancel, complete) at
time T +O(`+ ∆) (or at time T +O(`) when all parties are
honest).

Proof sketch. We discuss the case when all parties are honest.
As described in the proof of Proposition 5, when all parties
are honest, we have the payment will be settled within time
T +O(`), and furthermore the flag variables will be such that
flagi = complete for all i. Next we focus on the interesting
case where some parties are corrupt. Then, we need to prove
that the flag variables are pairwise consistent. When Pi and
Pi+1 are both honest, this follows from the fact that state
channels remain synchronzied no matter how the payment
between P1 and P` is settled. The interesting case is when say
Pi is honest (condition in proposition statement) and Pi+1 is
corrupt. That is, it suffices to prove that if flagi = cancel,
then it must hold that flagi+1 = cancel also holds. Now if
P` was corrupt and Pi+1 revealed the hash preimage (received
from P`) but the payment settlement was escalated to the
preimage manager contract where the preimage was revealed,
then it follows from the protocol description that in this case
flagi = complete (i.e., the proposition precondition does not
hold). The remaining cases are relatively straightforward as the
only way flagi is set to cancel is when Pi+1 supplied cancel

to the state channel between Pi and Pi+1 (and we already
handled the case when the preimage manager is involved in
changing flagi to complete. This concludes the proof of the
proposition.

Proposition 7. If P1 and P` are honest, then (flag1, flag`−1) ∈
{(complete, complete), (cancel, cancel)} at time T +
O(`+ ∆) (or at time T +O(`) when all parties are honest).

Protocol ΠLinked($X,T, P1, ...P`)

Let TExpiry := T + 6`+ ∆.
Let TCrit := TExpiry −∆ // Last chance to submit x
Let TDispute := TExpiry + ∆ + 3.

Update Function ULinked,$X(state, inL, inR, auxin)
if state = ⊥, set state := (init,⊥, (0, 0))
parse state as (flag, h, (credL, credR))
parse ini as (cmdi, in

Pay
i), for i ∈ {L, R}

if cmdL = open(h′) and flag = init, then
set credL −= $X , flag := inflight, and h := h′

otherwise if cmdL = complete and flag = inflight,
set credR += $X , and flag := complete

otherwise if cmdR = cancel and flag = inflight,
set credL += $X and flag := cancel

otherwise if cmdR = dispute or cmdL = dispute, and
flag = inflight, and current time > TExpiry, then

auxout := (dispute, h, $X) and flag = dispute

let statePay := (credL, credR)
(auxPayout , statePay) := UPay(statePay, inPay

L , inPay
R , auxin)

set state := (flag, h, statePay)
return (state, (auxout, auxPayout))

Auxiliary contract ContractLinked
Copy the auxiliary contract from Figure 11, renaming the
output handler to outputPay

on contract input output(aux∗out):
parse auxout as (auxout, auxPayout)
if aux∗out parses as (dispute, h, $X) then

if PM.published(TExpiry, h), then
depositsR += $X

else
depositsL += $X

auxin := (depositsL, depositsR)

invoke outputPay(auxPayout)

Global Contract ContractPM
initially timestamp[] is an empty mapping
on contract input publish(x) at time T :

if H(x) /∈ timestamp: then set timestamp[H(x)] := T

constant function published(h, T ′):
return True if h ∈ timestamp and timestamp[h] ≤ T ′
return False otherwise

Local protocol for sender, P1
on input pay from the environment:

x
$← {0, 1}λ, and h← H(x)

pass (open, h, $X,TExpiry) as input to F1
State

send (preimage, x) to P`
if (preimage, x) is received from P2 before TExpiry, then pass
complete to F1

State

at time TExpiry + ∆, if PM.published(TExpiry, h), then
pass input complete to F1

State

at time TDispute, then pass input dispute to F1
State

Local protocol for party Pi, where 2 ≤ i ≤ `− 1

on receiving state (inflight, h,) from F i−1
State

store h
provide input (open, h, $X,TExpiry) to F iState

on receiving state (cancel, ,) from F iState,
provide input (cancel) to F i−1

State

on receiving (preimage, x) from P` before time TCrit, where
H(x) = h,

pass complete to F iState
at time TCrit, if state (complete, ,) has not been received
from F iState, then

pass contract input PM.publish(x)

at time TExpiry + ∆,
if PM.published(TExpiry, h), pass complete to F iState
otherwise, pass cancel to F i−1

State

at time TDispute, pass input dispute to F i−1
State and F iState

Local protocol for recipient, P`
on receiving (preimage, x) from P1, store x and h := H(x)

on receiving state (inflight, h,) from F`−1
State,

multicast (preimage, x) to each party
at time TCrit, if state (complete, ,) has not been received
from F`State, then

pass contract input PM.publish(x)

at time TDispute, pass input dispute to F`−1
State

Other messages. Messages involving the FPay interface are
routed between the environment and the FState functionality
according to ΠPay (see Figure 7)

Fig. 15. Construction for FLinked in the FState-hybrid world. Portions of the update function ULinked,$X that are delegated to the underlying UPay update
function (Figure 11) are colored blue to help readability. The left column is duplicated from Figure 11.

Proof sketch. When all parties are honest, the proposition
directly follows from the proof of Propositions 5 and 6. The
interesting case is when some parties are corrupt. Note that
when both P1 and P` are honest, it follows that if P` received
inflight from F`−1

State then it would multicast the preimage of
h to all parties. We analyze two cases depending on whether
P` multicasted the preimage or not. Note that since P1 and
P` are honest the adversary does not have knowledge (except
with negligible probability) of the preimage unless it was
revealed by P`. Suppose P` revealed the preimage of h. Then,
in this case, we will argue that the end state for the flag
variables will be complete. This is because once the preimage
was revealed, all honest parties become aware of it and each
honest Pi would issue a complete command to F i

State and
either synchronize the state on-chain (with the help of the
preimage manager contract) or off-chain. This combined with
the fact that P1 is honest implies that the end state for the flag
variables flag1, flag` would be complete. We now turn to the
case when P` never revealed the preimage. Then from the
protocol description it follows that the adversary is not aware
of the preimage and therefore cannot transition a state channel
to complete. Therefore in this case, each state channel will
result in canceling the inflight status, and it follows that both
P1 and P` will end up with flag variables flag1, flag` set to
cancel. This concludes the proof.

D. Local Protocol for the State Channel Construction

In the body of the paper (Figure 4) we presented the smart
contract portion of the state channel protocol. In Figure 16 we
define the local behavior of the parties.

Reaching agreement off-chain: The main role of the local
portion of the protocol is to reach agreement on which inputs
to process next. To facilitate this we have one party, P1, act as
the leader. The leader receives inputs from each party, batches
them, and then requests signatures from each party on the
entire batch. After receiving all such signatures, the leader
sends a COMMIT message containing the signatures to each
party. This resembles the “fast-path” case of a fault tolerant
consensus protocol [11]; However, in our setting, there is no
need for a view-change procedure to guarantee liveness when
the leader fails; instead the fall-back option is to use the on-
chain smart contract.

a) Invariants maintained by the state channel: Note that
that when EventDispute(r) is received, we can assume that
r ≤ bestRound + 1 in the view of any honest party. This is
because the EventDispute event can only be triggered for
round bestRound + 1 of the contract, and bestRound is only
set in the contract after receiving inputs from every honest
party.

If a party Pi receives EventOffchain(r) while in the
flag = DISPUTE condition, it can be safely assumed that
a BATCH message has already been received and state has
already been updated to reflect the new state. This is because
EventOffChain can only be triggered after receiving an
update containing signatures from all parties, including Pi.

Lemma 8. If any party receives EventDispute(r, T), then
every party will receive from the contract either (1)
EventOffchain(r) within time T +∆, or (2) EventOnchain(r)
within time T + 2∆.

Proof. (Sketch) Since some party received EventDispute from
the contract, this means that the contract received dispute

from one of the parties. Observe that the variable deadline
is set to T + ∆. Now, if r corresponds to an earlier round
(i.e., not the current incomplete round), then an honest party
upon receiving EventDispute would send an update com-
mand to the contract with the state (along with signatures)
corresponding to the most recent completed round. In this case,
it follows that the contract would emit EventOffChain before
time T + ∆. On the other hand, suppose r corresponds to
the current round. In this case, we have that honest parties
would have r = lastRound + 1, and they would send their
current round input (r, vr,i) to the contract (which would be
accumulated by C) as their response to EventDispute. Then,
at time T + ∆, honest parties would send resolve right after
T + ∆ which ensures that they get a response from the on-
chain contract before time T + 2∆. This concludes the proof
sketch.

Lemma 9. If any honest party receives EventDispute(r, T)
from the contract, but does not receive COMMIT(r,) from the
leader before time T , then no party will receive COMMIT(r +
1,) until receiving EventOnchain(r) or EventOffchain(r)
from the contract.

Proof. (Sketch) Note that for the leader P1 to generate a
valid COMMIT message for round r + 1, it needs signa-
tures from all parties. Suppose some honest party received
EventDispute(r, T), then it must hold that r = bestRound+1.
This in particular means that the contract received signatures
on the state corresponding to the (r − 1)-th round from all
parties. Since P1 would not be able to forge honest parties’
signatures, it follows that the honest parties must have syn-
chronized their state until the (r−1)-th round (either on-chain
or off-chain). Now, suppose it holds that some honest party
Pj did not receive a message COMMIT message for round r,
then there are two cases to handle. First, if r is not the current
round, then in this case honest parties Pj would directly send
an update command with the most recent completed round
along with the latest synchronized state to the contract. This
has the effect of making the contract emit EventOffChain for
round r. Next if r is indeed the current round, then it follows
that honest party would immediately send to the contract (1)
an update message with the state corresponding to the (r−1)-
th round, and immediately afterwards (2) a dispute message
for round r. Taken together, these messages have the effect
of ensuring that the contract emits EventDispute for round
r. Following this and since r = lastRound + 1, an honest
party Pi would respond by sending their inputs vr,i to the
contract (irrespective of whether honest Pi received a message
of the form COMMIT(r,)). Then, the rest of the state is
synchronized on-chain (i.e., parties submit their inputs directly

Protocol ΠState(U,P1, ...PN)

Contract ContractState
Initialize bestRound := −1
Initialize state := ∅
Initialize flag := OK

Initialize deadline := ⊥
Initialize applied := ∅
on contract input evidence(r, state′, out, {σr,j}):

discard if r ≤ bestRound
verify all signatures on the message (r‖state′‖out)
if flag == DISPUTE then

flag := OK

emit EventOffchain(bestRound + 1)

bestRound := r
state := state′

invoke C.aux output(out)
applied := applied ∪ {r}

on contract input dispute(r) at time T :
discard if r 6= bestRound + 1
discard if flag 6= OK

set flag := DISPUTE

set deadline := T + ∆
emit EventDispute(r, deadline)

on contract input resolve(r) at time T :
discard if r 6= bestRound + 1
discard if flag 6= PENDING

discard if T < deadline
apply the update function state := U(state, {vr,j},
auxin), where the default value is used for any vr,j such
that party Pj has not provided input
set flag := OK

emit EventOnchain(r, state)
bestRound := bestRound + 1

on contract input input(r, vr,j) from party Pj :
if this is the first such activation, store vr,j

Local protocol for the leader, P1

Proceed in consecutive virtual rounds numbered r:
Wait to receive messages {INPUT(vr,j))}j from each party.
Let inr be the current state of auxin field in the the contract.
Multicast BATCH(r, inr, {vr,j}j) to each party.
Wait to receive messages {(SIGN, σr,j)}j from each party.
Multicast COMMIT(r, {σr,j}j) to each party.

Local protocol for each party Pi (including the leader)
flag := OK ∈ {OK, PENDING}
Initialize lastRound := −1
Initialize lastCommit := ⊥
Fast Path (while flag == OK)

Proceed in sequential rounds r, beginning with r := 0
Wait to receive input vr,i from the environment. Send
INPUT(vr,i) to the leader.
Wait to receive a batch of proposed inputs, BATCH(r, in′r, {v′r,j}j)
from the leader. Discard this proposal if Pi’s own input is
omitted, i.e., v′r,i 6= vr,i. Discard this proposal if in′r is not a
recent value of auxin in the contract.
Set (state, outr) := U(state, {vr,j}j , in′r)
Send (SIGN, σr,i) to P1, where σr,i := signi(r‖outr‖state)
Wait to receive COMMIT(r, {σr,j}j) from the leader. Discard
unless verifyj(σr,j‖outr‖state) holds for each j. Then:

lastCommit := (state, outr, {σr,j}j); lastRound := r
If outr 6= ⊥, invoke evidence(r, lastCommit) on the contract.

If COMMIT was not received within one time-step, then:
if lastCommit 6= ⊥, invoke the evidence(r− 1, lastCommit)
and dispute(r) methods of C

Handling on-chain events
On receiving EventDispute(r,), if r ≤ lastRound, then
invoke evidence(lastRound, lastCommit) on the contract. Oth-
erwise if r = lastRound + 1, then:

Set flag := PENDING, and interrupt any “waiting” tasks in the
fast path above. Inputs are buffered until returning to the fast
path.
Send input(r, vr,i) to the contract.
Wait to receive EventOffchain(r) or EventOnchain(r) from
the contract. Attempt to invoke resolve(r) if ∆ elapses, then
continue waiting. In either case:

state := state′

flag := OK
Enter the fast path with r := r + 1

Fig. 16. Construction of a general purpose state channel, FState, parameterized by transition function U . For readability, the left column is duplicated from
Figure 4.

to the contract). At time T + ∆, honest parties would send
resolve to the contract which would result in the contract
emitting EventOnChain for round r. This concludes the proof
sketch. We defer this proof to the full version [3].

Lemma 10. If any honest party receives EventDispute(r, T)
from the contract, and receives COMMIT(r) from the leader
before time T , then every party will receive EventOffchain(r)
by time T + 2∆.

Proof. (Sketch). By Lemma 8, it follows that we only need

to show that EventOnchain(r) will not be emitted whenever
COMMIT(r) is received before time T . Given that some honest
party Pj received COMMIT(r) from the leader, then this means
that all parties must have synchronized their state until round
r − 1. In addition, since Pj also received EventDispute(r, T)
from the contract, this implies that some party issued dispute

to the contract. Observe that r = lastRoundbestRound + 1
also holds. Now each honest party Pi would respond to the
EventDispute message with an update command that would
result in the on-chain contract emitting EventOffchain(r)

within time T + ∆. This concludes the proof.

Theorem 11. The ΠState protocol realizes the FState function-
ality assuming one way functions exist.

Proof. (Sketch) The ideal world simulator S for the dummy
real world adversary runs a sandboxed execution of ΠState

through which it relays instructions as described below.
When the simulator S receives a message of the form

(i, vr,i) from FState (i.e., leaked honest inputs), it stores this
message to use later in the simulation for the current round.

Following this, S simulates the local protocol for each
honest player to the A using leaked inputs. If the leader is
honest, then S acting as the leader, uses the leaked inputs
(from FState) as inputs received from honest parties. S waits
to receive round inputs from A for the corrupt parties. If it
receives inputs from all corrupt parties, then acting as the
leader, S accumulates these values, and multicasts it to all
corrupt parties. Following this, S waits to receive signatures
on the batched inputs. S generates signatures on behalf of
the honest parties (i.e., it uses a simulated public/signing keys
for the honest parties). Once all signatures are received, then
these signatures (i.e., corresponding to both honest and corrupt
parties) are multicasted to the adversary. S then increments the
round number and continues with the simulation. On the other
hand, if the leader is corrupt, then S sends simulated honest
messages (according to ΠState to A and receives messages
BATCH and COMMIT from A.

Of course, all this is good only when the corrupt parties
follow the off-chain protocol faithfully. Now a corrupt party
might not send its inputs or its signature or might directly
trigger the contract or might attempt to keep the contract
and off-chain executions out of sync. Not supplying inputs is
handled in a straightforward manner by just replacing it with
⊥. Not supplying signatures on batched inputs corresponds
to a halt in the off-chain round. This in turn would result in
honest parties having to escalate the off-chain round to the on-
chain contract. Lemma 8 then shows how the execution gets
completed on-chain. Since S closely mimics the real protocol,
the indistinguishability follows from the proof of Lemma 8
in this case. Directly raising a dispute the on-chain contract
would result in a state change that notifies the (simulated)
honest parties who can then issue an update command to
the contract. This case is handled by Lemma 10. Finally, A’s
attempts to keep the on-chain contract and off-chain executions
out of sync are handled by observing that on-chain contract
notifications (in particular EventDispute) are available to all
honest parties who can then recover from inconsistent corrupt
inputs by issuing an update command to the contract that
syncs the state on the on-chain chain with the off-chain state.
This case is handled by Lemma 8 and Lemma 10.

Finally, we consider the case when the leader is unable to
provide a COMMIT message for this round. This could happen
if either the leader is corrupt, or the corrupt parties did not
submit a signature on the BATCH message the contains this
round’s messages. In either case, Lemma 9 applies and we are
guaranteed that the next round honest messages are exchanged

Transaction Cost in Gas Cost in $
Create Preimage Manager 150, 920 0.27
Submit Preimage 43, 316 0.08
Create Sprites 4, 032, 248 7.26
Deposit 42, 705 0.08
Store State (Hash) 98, 449 0.18
Payment 163, 389 0.29
Open Transfer 323, 352 0.58
Complete Transfer 62, 235 0.11
Dispute Transfer 63, 641 0.11
Dispute 88, 047 0.16
Individual Input 49, 444 0.09
Resolve 199, 151 0.36

TABLE I
A BREAKDOWN OF THE COSTS ON ETHEREUM’S TEST NETWORK. WE

APPROXIMATE THE COST IN USD ($) USING THE CONVERSION RATE OF 1
ETHER = $90 AND THE GAS PRICE OF 0.00000002 ETHER WHICH ARE THE

REAL WORLD COSTS IN MAY 2017.

only after the current round state is synchronized among the
parties.

Contract inputs and outputs (including coins) are handled
in the straightforward manner. One thing to note is that
the event emitted by the on-chain contract may be delayed.
Other than this, simulation proceeds by faithfully applying the
parameterized update function to the state and also maintains
a variable bestRound which in addition to variables state and
applied, keeps track of the on-chain state (and prevents replay
attacks).

E. Proof of concept Implementation in Ethereum

In this section, we discuss our proof of concept implemen-
tation of Sprites before highlighting how the implementation
supports concurrent conditional tranfers and how to incor-
porate a payment protocol to fairly exchange an invoice for
payment among merchants and customers.

a) Implementation of the Smart Contracts: Table I pro-
vides a break down of the computational and financial costs
for deploying our implementation of Sprites on Ethereum’s
Ropsten test network. There is a contract for the Preimage
Manager6 and the Sprites channel7. Both contracts are written
in Solidity and reflect the functionalities outlined in this paper.
Next, we briefly discuss the functionality of each contract and
their associated costs.

Preimage Manager. This is a timestamping service that
records when the pre-image of a conditional transfer is
revealed in the blockchain. Creating this contract requires
150,920 gas and submitting the pre-image of an in-flight
conditional transfer requires 43,316 gas. The address of this
contract is included in the Sprites contract to facilitate com-
munication for resolving disputed conditional transfers.

Sprites. This contract establishes a two-party channel and
replicates the functionalities outlined in the paper. Creating
the Sprites contract costs 4,032,248 gas. It is worth mentioning
that Sprites can be implemented such that its code is re-usable
by other contracts. This is feasible using the DELEGATECALL
opcode which permits a new contract to call the desired

6Manager 0x62E2D8cfE64a28584390B58C4aaF71b29D31F087
7Sprites: 0x85DF43619C04d2eFFD7e14AF643aef119E7c8414

function in Sprites before updating the calling contract’s local
storage. An example of this approach can be found here [22].
This is important to highlight as the expensive gas cost for
creating a Sprites contract is only incurred once.

Each party can deposit coins into the contract at any time
and this costs 42,705 gas. In each round both parties co-
operatively sign the new state’s hash and this requires no
interaction with the contract. If there is a dispute, either party
can broadcast a transaction that includes the current state hash
to the Sprites contract. This executes the update function which
will verify the counterparty’s signature before recording the
state hash and this costs 98,449 gas. It is worth noting that
the contract only accepts the state hash if it is more recent
than what is currently recorded. Once the hash is stored in the
contract, both parties must provide Sprites with the pre-image
in order to update the contract to reflect this state.

Unfortunately solidity restricts the number of variables
that can exist in a single function [36] and this required
us to create two seperate functions UpdateChannel and
UpdateTransfers for updating the contract’s state. The
first function UpdateChannel accepts both the payment
and withdrawal commands. The former updates the balance
of both parties to reflect a new payment, whereas the former
deallocates coins for use in this channel such that the coins
can later be withdrawn from the contract. In our experiment
we tested the payment command and this costs 163,389 gas.
On the other hand, the second function UpdateTransfers
applies the conditional transfers. Opening a transfer costs
323,352 gas and completing a successful transfer costs 62,235
gas, whereas raising a dispute and communicating with the
PreimageManager costs 63,641 gas.

Once the latest state is applied, one or both parties can
send commands directly to the contract using the trigger
functionality. Calling the dispute function will employ
a grace period that permits one or both parties to submit
commands to the contract and this costs 87,850 gas. As an
example, we provided the payment command as an individual
input during this grace period which cost 49,444 gas. To finish
either party can call the resolve function after the grace
period. This effectively processes the commands (i.e. payment)
before updating the contract’s state for the next round. Of
course, this trigger can be cancelled during the grace period if
either party submits a state hash for a more recent round that
is what currently stored in the contract.

Our implementation of the state channel contract is given
in Figure 17.

F. Reproduction of the Flare experiment [50]

Flare is one of the first proposed decentralized routing
algorithms for payment channel networks. In Flare, each node
has a routing table consisting of the neighborhood of nodes
that are nearby in hop distance (connected by a path of few
channels). Routing tables also contain paths to a number of
beacons, which serve as landmarks and allow the node to have
a partial view of the far away parts of the network. If a source
node is unable to route to a destination using its routing table,

it continuous to query additional nodes for their routing tables
until it is either to determine a route or it gives up. Flare allows
for a high expectation of finding a route while requiring that
each node to maintain memory proportionate to the logarithm
of the total number of nodes on the network.

a) Routing Table Generation: In Flare, each node has a
routing table consisting of the neighborhood of nodes that are
nearby in hop distance. Nodes also select a number of beacons,
which serve as landmarks and allow the node to have a partial
view of the far away parts of the network. Like Kademlia,
all nodes are given the output of a hash function as an ID,
so that the XOR of IDs can be used to measure distance.
Nodes attempt to find beacons that are closest to them in
XOR address space. Because these addresses are randomly
generated, beacon nodes are expected to be average distance
away in hop length. During beacon selection, nodes close in
XOR address space are selected as beacon candidates. Beacon
candidates can accept their role or give the path to an even
closer candidate that it knows of. This process continues until
no additional beacon candidates are suggested.

b) Route Selection: During route selection, the source
node first attempts to route to the destination using its routing
table. Failing that, it attempts to route using the combined
routing table of both itself and the destination node. Each
failure after that, the source node not-yet queries the node
in its routing table that has the smallest XOR distance to the
destination. The queried node responds with its routing table,
which the source node merges with its combined routing table.
The source node may continue to query nodes until it is able
to route to the destination or give up.

c) Beacon Selection: Flare normally performs k-shortest
paths using the combined knowledge of the source, desti-
nation, and the routing tables of any queried nodes. Flare
uses k-shortestpaths to account for the dynamic nature of
payment channel networks, which means channels may not
have enough capacity by the time route selection is made.
Upon each failure, the source queries an additional node
for its routing table, which is then used to reattempt route
selection. We approximate this behavior by performing a
single shortest path over only the channels known to have
enough capacity to field the payment. Upon failing 10 times
(and querying 10 additional nodes’ routing tables), we mark
the request as failed. Generally, payments may have to route
along longer paths or fail as channels close and capacity
diminishes. Therefore, we expect that our Flare approximation
will exhibit signs of stress in the network by more frequently
returning longer path lengths or failing to return a path at all.

Pridhoko et al. [50] evaluated Flare with simulations of
2,000 and 100,000 nodes. In their simulations, they use the
Watts-Strogatz topology with an average degree of 4 and edge
rewiring probability of 0.3. They parameterize their algorithm
with a neighborhood radius of 2 and a route selection query
limit of 10. They vary the number of beacons between 0 and
12. Their simulation proceeds follows:

1) Initialize payment channel network topology.
2) Perform beacon selection for all nodes in random order.

1 contract StateChannel {
2 address[] public players;
3 mapping (address => uint) playermap;
4 int bestRound = -1;
5 enum Flag { OK, DISPUTE }
6 Flag flag;
7 uint deadline;
8 mapping (uint => bytes32[]) inputs;
9 mapping (uint => bool) applied;

10
11 bytes32 aux_in;
12 bytes32 state;
13
14 event EventDispute (uint round, uint deadline);
15 event EventOnchain (uint round);
16 event EventOffchain (uint round);
17
18 function handleOutputs(bytes32 state) {
19 // APPLICATION SPECIFIC REACTION
20 }
21
22 function applyUpdate(bytes32 state, bytes32 aux_in, bytes32[] inputs) returns(bytes32) {
23 // APPLICATION SPECIFIC UPDATE
24 }
25
26 function input(uint r, bytes32 input) onlyplayers {
27 uint i = playermap[msg.sender];
28 assert(inputs[r][i] == 0);
29 inputs[r][i] = input;
30 }
31
32 function dispute(uint r) onlyplayers {
33 assert(r == uint(bestRound + 1)); // Requires the previous state to be registered
34 assert(flag == Flag.OK);
35 flag = Flag.DISPUTE;
36 deadline = block.number + 10; // Set the deadline for collecting inputs or updates
37 EventDispute(r, block.number);
38 }
39
40 function resolve(uint r) {
41 // No one has provided an "update" message in time
42 assert(r == uint(bestRound + 1));
43 assert(flag == Flag.DISPUTE);
44 assert(block.number > deadline);
45
46 // Process all inputs received during trigger (a default input is used if it is not received)
47 flag = Flag.OK;
48 state = applyUpdate(state, aux_in, inputs[r]);
49 EventOnchain(r);
50 bestRound = int(r);
51 }
52
53 function evidence(Signature[] sigs, int r, bytes32 _state) onlyplayers {
54 if (r <= bestRound) return;
55
56 // Check the signature of all parties
57 var _h = sha3(r, state);
58 for (uint i = 0; i < players.length; i++) {
59 verifySignature(players[i], _h, sig);
60 }
61
62 // Only update to states with larger round number
63 if (r > bestRound) {
64 // Updates for a later round supercede any pending dispute
65 if (status == Status.DISPUTE) {
66 status = Status.OK;
67 EventOffchain(uint(bestRound+1));
68 }
69 bestRound = r;
70 state = _state;
71 }
72 applied[r] = true;
73 handleOutputs(_state);
74 }
75 }

Fig. 17. Solidity contract for general purpose state channel, corresponding to the pseudocode in Figure 4.

Fig. 18. Payment channel routing success in Flare. The left columns (F)
are from Pridhoko et al. [50], while the right columns (M) are from our
implementation. If the accessible nodes percentage is y, then on average, a
node in the network can route a payment to y percent of the other nodes. We
vary the Flare algorithm parameters, the number of peers each node queries,
and the number of beacons kept in each node’s routing table.

3) Choose 10 nodes randomly. For each selected node
attempt to route to all other nodes.

We repeated their simulation 30 times using our implementa-
tion of their algorithm. Comparisons of our results for acces-
sible nodes are shown in Figure 18. Our results also feature
error bars that are equal to 2 standard deviations both above
and below the mean value. Though there are some differences
in our results, we notice that the differences decrease as the
number of queries and beacons increase. While some of the
variation can be explained by nondeterminism, we do expect
that there are minor differences in implementation. Regardless,
because we use at least 6 beacons and a query limit of 10 in
our experimentation (where there is little difference in our
implementations), we expect our implementation to faithfully
represent the proposed algorithm.

	I Introduction
	II Background and preliminaries
	II-A Bitcoin and Blockchains
	II-B Blockchain scaling
	II-C Off-chain Payment Channels
	II-D Linked payments and payment channel networks
	II-E Related Work

	III Overview of the Sprites construction
	III-A Constant locktime linked payments.
	III-B Supporting incremental deposits and withdrawals.

	IV The State Channel Abstraction
	IV-A Modeling a State Channel as an ideal functionality
	IV-B Instantiating state channels
	IV-C Modeling payment channels as an ideal functionality
	IV-D Constructing FPay from FState

	V Linked Payments from State Channels
	V-A Modeling linked payment chains as an ideal functionality.
	V-B Instantiating linked payments

	VI Simulating Payment Channel Networks
	VII Discussion and Conclusion
	References
	Appendix
	A Ideal Functionalities and Simulation Based Security
	B Simulation-based Security Proof for Payment Channels
	C Details of the Linked Payments Construction
	D Local Protocol for the State Channel Construction
	E Proof of concept Implementation in Ethereum
	F Reproduction of the Flare experiment flare

