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Abstract. We present a novel multilevel approach for deep learning
based image registration. Recently published deep learning based regis-
tration methods have shown promising results for a wide range of tasks.
However, these algorithms are still limited to relatively small deforma-
tions. Our method addresses this shortcoming by introducing a multilevel
framework, which computes deformation fields on different scales, similar
to conventional methods. Thereby, a coarse-level alignment is obtained
first, which is subsequently improved on finer levels. We demonstrate
our method on the complex task of inhale-to-exhale lung registration.
We show that the use of a deep learning multilevel approach leads to
significantly better registration results.
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1 Introduction

Image registration is the process of aligning two or more images to achieve
point-wise spatial correspondence. This is a fundamental step for many medical
image analysis tasks and has been an active field of research for decades. Since
recently, deep learning based approaches have been successfully employed for
image registration [2,4,6,7,13,16]. They have shown promising results in a wide
range of application. However, capturing large motion and deformation with deep
learning based registration is still an open challenge. In common iterative image
registration approaches, this is typically addressed with a multilevel coarse-to-
fine registration strategy [1,11,15]. Starting on a coarse grid with smoothed and
down-sampled versions of the input images a deformation field is computed which
is subsequently prolongated on the next finer level as a initial guess. Hereby, a
coarse level alignment is obtained first that typically captures the large motion
components and which is later improved on finer levels for the alignment of more
local details. Most of the recently presented deep learning based approaches also
make use of a multilevel strategy as they are based on the U-Net architecture
[2,6,7,13]. Thereby, the first half of the ”U” is used to generate features on
different scales starting at the highest resolution and reducing the resolution
through pooling operations. In this procedure, however, only feature maps on
different levels are calculated but neither different image resolutions are used
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nor deformation fields are computed. Only a few approaches implement a multi-
resolution or hierarchical strategy in the sense of multilevel strategies associated
with conventional methods. In [8] the authors proposed an architecture which is
divided into a global and a local network, which are optimized together. In [4]
a multilevel strategy is incorporated into the training of a U-net. Here, a CNN
is grown and trained progressively level-by-level. In [16] a patch based approach
is presented, where multiple CNNs (ConvNets) are combined additive into a
larger architecture for performing coarse-to-fine image registration of patches.
The results from the patches are then combined into a deformation field warping
the whole image. In this work, we address this challenge and present a multilevel
strategy for deep learning based image registration to advance state-of-the-art
approaches. The contribution of this paper includes:

– We present deep learning based multilevel registration that is able to com-
pensate and handle large deformations by computing deformation fields on
different scales and functionally compose them.

– Our method is a theoretically sound and a direct transference of coarse-to-
fine registration from conventional, iterative registration schemes to the deep
learning based methods.

– We do not rely on patches. We take the whole image information into account
and always consider the full field of view on all levels.

– A robust and fast registration method for the complex task of inhale-to-
exhale registration validated on a large dataset of 270 thoracic CT scan
pairs of the multi-center COPDGene study and on the publicly available
DIR-LAB dataset [3].

2 Method

Our deep learning based framework for deformable image registration consists of
two main building blocks. The first one is the specific design of the convolutional
neural network and the loss function. In general, several architectures together
with different distance measures, regularizer and penalty terms can be used.
However, we focus on a U-Net based architecture, combined with a loss function
that has shown good results for the task of pulmonary registration [14]. The
second main building block is the embedding into a multilevel approach from
coarse to fine. In the following, we give a brief outline of the variational setup,
then we describe our particular architecture and loss function and, finally, we
present its embedding into a multilevel approach.

Variational Registration Approach:

Following [10], let F ,M : R3 → R denote the fixed image and moving image,
respectively, and let Ω ⊂ R3 be a domain modeling the field of view of F . We
aim to compute a deformation y : Ω → R3 that aligns the fixed image F and
the moving image M on the field of view Ω such that F(x) and M(y(x)) are
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similar for x ∈ Ω. The deformation is defined as a mimimizer of a suitable cost
function that typically takes the form

J (F ,M, y) = D(F ,M(y)) + αR(y) (1)

with so-called distance measure D that quantifies the similarity of fixed image
F and deformed moving image M(y) and so-called a regularizer R that forces
smoothness of the deformation typically by penalizing of spatial derivatives.
Typical examples for the distance measure are, e.g., the squared L2 norm of the
difference image (SSD), cross correlation (CC) or mutual information (MI). In
our experiments, we follow the approach of [14] using the edge based normalized
gradient fields distance measure (NGF) and second order curvature regulariza-
tion.

Deep Learning based Image Registration

In contrast to conventional registration [10], we do not employ iterative opti-
mization during inference of new unseen images but use a convolutional neural
network (CNN) that takes images F andM as input and yields the deformation
y as output. Thus, in the context of CNNs we can consider y as a function of
a trainable CNN model parameter vector θ ∈ RP and input images F , M, i.e.
y(x) ≡ y(θ;F ,M, x). In an unsupervised learning approach, we set up a loss
function L that depends on F ,M and y, and then θ is learned by training, i.e.,
minimizing the expected value of L among a set of representative input images
w.r.t. θ. A natural choice would L = J . However, in our particular applica-
tion, we have additional information available during training and we perform a
weakly supervised approach. To this end, we define our loss function as suggested
in [7]

L(F ,M, bF , bM, y) = J (F ,M, y) +
β

2
‖bF − bM(y)‖2L2

(2)

with binary segmentation masks bF and bM(y) of the fixed and warped moving
image, respectively. Note that these segmentations are only used to evaluate the
loss function for training and their are not used as network input.

Single Level Architecture

Our CNN y ≡ y(θ,M,F) is based on a U-Net which takes the concatenated
3D moving and fixed image as input and predicts a 3D dense displacement
field. The network consists of three resolution levels starting with 16 filters in
the first layer, which are doubled after each downsampling step. We apply 3D
convolutions in both encoder and decoder stage with a kernel size of 3 followed
by a batch normalization and a ReLU layer. For downsampling the feature maps
during the encoder path, an 2× 2× 2 average pooling operation with a stride of
2 is used. Transposed convolutions upsample and halve the feature maps in the
decoder path. At the final layer, a 1× 1× 1 convolution is used to map each 16
component feature vector to a three dimensional displacement vector.
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Multilevel Deep Learning based Registration

Multilevel continuation and scale space techniques have been proven very effi-
cient in conventional variational registration approaches to avoid local minima,
to reduce topological changes or foldings and to speed up runtimes [1,9,11,15].
However, beside carrying over these properties, our major motivation here is, to
overcome the limitation of deep learning based registration to small and local
deformations.

We follow the ideas of standard multilevel registration and compute coarse
grid solutions that are prolongated and refined on the subsequent finer level. To
this end, first we create image pyramids F`,M` for ` = 1, . . . , L with coarsest
level L. We start on finest level ` = 1 and subsequently halve image size and
resolution from level to level. Registration starts on coarsest level L and we
compute deformation yL from images FL andML as network input. On all finer
levels ` < L, we incorporate the deformations from all preceding coarse levels as
initial guess. Therefore, we combine them by functional composition and warp
the moving image at current level. Let X` denote the cell-centered image grid
on level `, we compute the warped moving M`(Y`) with

Y` := y`+1 ◦ y`+2 ◦ . . . ◦ yL(X`)

and use it together with fixed image F` as network input, yielding the defor-
mation field y` on the current level. The final output deformation y is then
given by composition of the whole sequence of coarse-to-fine solutions, i.e.,
y = y1◦y2◦. . .◦yL. To evaluate deformations and images at non-grid grid points,
we use trilinear interpolation. Our scheme is summarized in Algorithm 1.

In our experiments we use in particular a three level scheme (L = 3). and
we create image pyramid with three reduced resolution images generated from
the original 3D images by applying a low-pass filter with a stride of two, four
and eight. During training, the three networks are learned progressively. First,
the network on the coarsest level is trained for a fixed amount of epochs. Af-
terwards, the parameters of the middle network are learned while the coarsest
network stays fixed and is only used to produce the initial deformation field. The
same procedure is repeated on the finest level. The same architecture is used on
all levels. The convolution parameters on the coarsest level are initialized with
Xavier uniform [5]. Whereas, all other networks are using the learned parameters
of the previous network as initialization. Note that the receptive field in voxel is
the same for all used networks, however, due to to the decreased resolution on
the coarse levels, the receptive field in mm is much higher.

3 Experiments and Results

We demonstrate our deep learning based registration method by registration
of inhale-to-exhale lung CT scans. We use data from 500 patients for training
and a disjoint set of 50 patients for validation from the COPDGene study, a
large multi-center clinical trial with over 10,000 subjects with chronic obstructive
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Algorithm 1: Multilevel Deep Learning Registration
IN : Fixed image F , moving image M, image grid X
OUT: Corse-to-fine deformations yL, ..., y1, transformed grid Y = y1 ◦ . . . ◦ yL(X)

1 Create image pyramid F`,M` for ` = 1, 2, ..., L with finest level ` = 1 and L coarsest.
2 On coarsest level Compute deformation yL = CNN(FL,ML)
3 for ` = L− 1, L− 2, ..., 1 do
4 Compute transformed grid Y` = y`+1 ◦ ... ◦ yL(X`)
5 Compute deformation y` = CNN(F`,M`(Y`))

6 end
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Fig. 1. Comparison of Dice overlaps for all test images and each anatomical label
(average of all labels , upper left lobe (ULL) , lower left lobe (LLL) , upper right
lobe (URL) , lower right lobe (LRL) , middle right lobe (MRL) (LRL) ). For each
one the distributions of Dice coefficients after an before registration, after single level
dl registration, multilevel dl registration without pretrained CNNs and after multilevel
registration with pretrained CNNs.

pulmonary disease (COPD) [12]. The dataset was acquired across 21 imaging
centers using a variety of scanner makes and models. Each patient had received
two breath-hold 3D CT scans, one on full inspiration (200mAs) and one at
the end of normal expiration (50mAs). For all scans segmentations of the lobes
are available, which were computed automatically and manually corrected and
verified by trained human analysts. The original images have sizes in the range of
512×512×{430, . . . , 901} voxels. Due to memory and time limitations, we create
low-resolution images by resampling to a fixed size of 160×160×160 voxels. The
low-resolution images are then used during training for the computation of the
deformation field and for evaluating of the loss function. Note that, our method
is generally not limited to any fixed input size. Although we use images with 1603

voxels, the computed deformation field are defined on full field-of-view and can
be evaluated on grids with arbitrary resolution by using trilinear interpolation.
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Consequently, we use original full-resolution images for the evaluation of our
method.

Multilevel vs. Single Level

First, we evaluate our multilevel approach on a disjoint subset of 270 patients
from the COPDGene study. We compare our proposed method against a single
level approach with only one U-Net using the images on finest level as inputs. We
train both approaches for 75 epochs with the same hyper-parameters. For the
multilevel approach, the epochs are split equally at each level. We also evaluate
the effect on how the network parameter are initialized. Therefore, we compare a
Xavier initialization for all convolution parameters of all three networks against
our proposed progressive learning strategy. Therefore, only the convolution pa-
rameters on the coarsest level are initialized with Xavier initialization and the
training of subsequent network is started with the learned parameters form the
network of the previous level.

We evaluate our method by measuring the overlap of the lobe masks. The
underlying assumption is, that if a deformation yields accurate spatial correspon-
dences, then lobe segmentations of the fixed and the warped lobe segmentation of
the moving image should overlap well. Fig. 1 shows the Dice scores for each label
and the average over all labels as a box-plot. Our proposed multilevel approach
increase the Dice Score from 63.5% to 92.1%. In contrast, the single level method
archive a Dice Score of 88.3%. Furthermore, the multilevel approach produced
less foldings (0.3% to 2.1% ). Figure 2 shows representative qualitative results
for of two scan pairs before registration and after our single level and multilevel
registration. In both cases the respiratory motion was successfully recovered.
Although the single level registration produces reasonable Dice scores, it does
not well align the inner structures. This is also reflected by the landmark errors
in the following section. Comparing the results of the pretrained initialization
to the random initialization, an improvement of about 2% in terms of the Dice
Score could be reached.

Comparison with state-of-the-art

Additionally, we evaluate our method and compare it to others on the public
available DIR-LAB dataset [3]. It is a collection of ten inspiration-expiration
cases with 300 expert-annotated landmarks in the lung. The landmarks are used
for evaluating our deformable registration method. The mean (and standard de-
viation) for all ten scans for the deep learning based multi-resolution approaches
of Eppenhof [4] and de Vos (DLIR) [16], the single VIRNET and our proposed
method are listed in table 1. The overall average landmark error is 2.19mm with
a standard deviation of 1.62mm. In contrast to the other methods, our mlVIR-
NET is more robust against outliers and can better handle large initial landmark
distances without training on this specific dataset.
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(a) before (b) single level(c) multilevel (d) before (e) single level (f) multilevel

Fig. 2. Visualization of two inspiration-expiration registration results: (a) - (c) show
coronal views before and after single and multilevel registration, (d) and (f) sagittal
views, respectively. The color overlays show the inhale scan in orange and the exhale
in blue; due to addition of RGB values, aligned structures appear gray or white. In
both cases the respiratory motion was successfully recovered. However, the single level
registration does not well align the inner structures.

4 Discussion and Conclusion

We presented an end-to-end multilevel framework for deep learning based im-
age registration which is able to compensate and handle large deformations by
computing deformation fields on different scales. Our method takes the whole
image information into account and predicts a dense 3D deformation field. We
validated our framework on the challenging task of large motion inhale-to-exhale
registration using large image data of the multi-center COPDGene study. We
have shown that our proposed method archives better results than the compara-
ble single level variant. In particular with regard to the alignment of inner lung
structures and the presence of foldings. Only less than 0.3% voxel positions of
the images showed a folding. Additionally, we demonstrated that using the net-
work parameter of the previous level as initialization, yields to better registration
results. Moreover, we demonstrated the transferability of our approach to new
datasets by evaluating our learned method on the publicly available DIRLAB
dataset and showing a lower landmark error than other deep learning based reg-
istration methods.
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and Award Number U01 HL089856 from the National Heart, Lung, and Blood
Institute. The COPDGene project is also supported by the COPD Foundation
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Scan Initial Eppenhof [4] DLIR [16] single VIRNET mlVIRNET

Case 1 3.89(2.78) 2.18(1.05) 1.27(1.16) 1.73(0.83) 1.33(0.73)
Case 2 4.34(3.90) 2.06(0.96) 1.20(1.12) 2.38(1.11) 1.33(0.69)
Case 3 6.94(4.05) 2.11(1.04) 1.48(1.26) 3.01(1.86) 1.48(0.94)
Case 4 9.83(4.85) 3.13(1.60) 2.09(1.93) 4.28(2.37) 1.85(1.37)
Case 5 7.48(5.50) 2.92(1.70) 1.95(2.10) 3.17(2.2) 1.84(1.39)
Case 6 10.89(6.96) 4.20(2.00) 5.16(7.09) 4.85(3.04) 3.57(2.15)
Case 7 11.03(7.42) 4.12(2.97) 3.05(3.01) 3.67(1.82) 2.61(1.63)
Case 8 14.99(9.00) 9.43(6.28) 6.48(5.37) 5.75(3.93) 2.62(1.52)
Case 9 7.92(3.97) 3.82(1.69) 2.10(1.66) 4.90(2.25) 2.70(1.46)
Case 10 7.30(6.34) 2.87(1.96) 2.09(2.24) 3.49(2.21) 2.63(1.93)

Total 8.46(6.58) 3.68(3.32) 2.64(4.32) 3.72(2.45) 2.19(1.62)
Table 1. Mean (standard deviation) of the registration error in mm determined on
DIR-Lab 4D-CT data. From left to right: initial landmark error, the multi-resolution
approaches of [4] and [16] and the single level VIRNET and the proposed multilevel
VIRNET.
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