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Abstract

In the last two decades, several methods for airway segmentation from chest CT images have been 

proposed. The following natural step is the development of a tool to accurately assess the 

morphology of the bronchial system in all its aspects to help physicians better diagnosis and 

prognosis complex pulmonary diseases such as COPD, chronic bronchitis and bronchiectasis. 

Traditional methods for the assessment of airway morphology usually focus on lumen and wall 

thickness and are often limited due to resolution and artifacts of the CT image. Airway wall 

cartilage is an important characteristic related to airway integrity that has shown to be deteriorated 

during the airway disease process. In this paper, we propose the development of a Model-Based 

GAN Regressor (MBGR) that, thanks to a model-based GAN generator, generate synthetic airway 

samples with the morphological components necessary to resemble the appearance of real airways 

on CT at will and that simultaneously measures lumen, wall thickness, and amount of cartilage on 

pulmonary CT images. The method is evaluated by first computing the relative error on generated 

images to show that simulating the cartilage helps improve the morphological quantification of the 

airway structure. We then propose a cartilage index that summarizes the degree of cartilage of 

bronchial trees structures and perform an indirect validation with subjects with COPD. As shown 

by the results, the proposed approach paves the way for the use of CNNs to precisely and 

accurately measure small lung airways morphology, with the final goal to improve the diagnosis 

and prognosis of pulmonary diseases.
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1 Introduction

In the last two decades, several methods have been proposed to help physicians accurately 

locate small pulmonary bronchi on chest CT images, that otherwise requires a tedious and 

time-consuming analysis of the data.

Once the structures are identified, an equally important step is represented by a quantitative 

measurement and morphological analysis of the bronchial tree, as this is the part that is 
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commonly affected by inflammatory and infectious lung diseases. As an example, the 

smaller conducting airways are the structures most affected in patients with chronic 

obstructive pulmonary disease (COPD) [4], while emphysema has been related to a 

diminished presence of cartilage in the airway walls [15]. For this reason, a method that 

provides accurate and precise information about the airway cartilage amount may greatly 

improve the diagnosis and prognosis of lung diseases.

To the best of our knowledge, while methods have attempted to characterize only wall 

thickness and lumen size on CT images [10,12], information about the cartilage amount is 

not provided. One of the reasons why prior work has not been proposed to quantify airway 

wall cartilage is the complexities to define a ground truth. Histological studies are limited, 

and it is extremely complex to have imaging data with a well-characterized histological 

correlate for each airway point. That being said, the histological model of an airway is well 

understood and can be easily parameterized. On the other hand, the imaging reconstruction 

process can also be modeled to some extent.

Deep learning [6] is quickly becoming the de-facto approach for solving various tasks in the 

medical imaging field. One of the advantages of deep learning approaches is the ability to 

learn from a given domain that can be synthetically generated. In our context, where 

properly labeled airway morphology data is highly complicated to obtain as a tedious and 

prone to error analysis of CT images is required, this learning paradigm from a synthetic 

model is appealing.

In this paper, we propose the development of a Model-Based GAN Regressor (MBGR) that 

automatically generates 2D patches of synthetic airways resembling real small bronchi 

(radius < 6.0 mm) on CT images with known morphometric characteristics of cartilage, wall 

thickness, and lumen size. Due to the generative nature of our approach, infinite training 

samples with varying imaging characteristics are available to train a regressor that can 

estimate those morphometric quantities.

To validate the method, we first compute the relative error (RE) obtained on synthetic 

patches and we demonstrate that generating a more accurate airway model that takes into 

account the cartilage improves the estimation of the airway morphology (wall thickness and 

lumen) with respect to a model without cartilage. Then, we perform an indirect validation 

that shows that in the cartilage assessment in a population of 547 smoking subjects with and 

without COPD, our measurements relates to disease severity in a consistent manner with 

prior histological studies [15].

2 Materials and Methods

Figure 1 shows the flow diagram of the proposed MBGR that automatically generates 

synthetic CT airways, refines them to resemble real bronchi and simultaneously predicts 

cartilage amount, wall thickness, and lumen size. Although less clinically relevant, for 

completeness and to help the network better learn airway characteristics, the size of the 

cartilage wall thickness is also measured.
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The model-based generator, MBG, is characterized by an airway geometric model that 

creates 2D images of 32 × 32 pixels on the reformatted axial plane, a reasonable simulation 

as in in-vivo CT images this plane can be extracted along the axis given by the first 

eigenvector of the Hessian matrix. The geometric model consists of two bright ellipses 

(inner and outer walls) and a central dark area (lumen) with tangent vessels represented by 

bright ellipses randomly rotated around the airway.

To simulate the presence of cartilage, two ellipses are created at the center of the airway 

walls with higher intensity and varying wall thickness. As reported in [15], the percentage of 

cartilage varies depending both on lumen size (based on Weibel dichotomous morphometry 

[16]) and amount of emphysema. Therefore, for each airway a random percentage of 

cartilage is selected between minimum and maximum values of each bronchial order and 

level of emphysema, in accordance to Table 1 in [15]. Based on the selected cartilage 

percentage, equally-spaced sections of the brighter ellipses are removed, as shown in Fig. 2a, 

using the area of the elliptical sector:

F(θ) = ab
2 θ − arctan (b − a)sin2θ

b + a + (b − a)cos(2θ) (1)

where θ is the angle inside the sector and a and b represent the main axis of the ellipse. The 

cartilage wall thickness is chosen as a random percentage of the total wall thickness in the 

range [0.01 * wall thickness, 0.6 * wall thickness] mm, while the cartilage radius is given 

by:

CR = LR + W T
2 − CW T

2 (2)

where LR indicates the lumen radius size, WT the wall thickness, and CWT stands for 

cartilage wall thickness. All parameters to generate the geometry model of the airway were 

randomly chosen based on physiological values as described in Table 1.

To mimic the structure of the parenchyma, first a Gaussian smoothing (with a standard 

deviation of 5) was applied to Gaussian distributed noise, to create some broadly correlated 

noise, which made a texture of multiple structures. Then, the correlated noise was altered to 

have a mean intensity of −900 HU and a standard deviation of 150. All values were 

empirically chosen. A super-resolution of 0.05 mm/pixel in a sampling grid of 640 × 640 

pixels that is then down-sampled to a resolution of 0.5 mm/pixel is used to create the initial 

patches (Fig. 2b). Next, a PSF is simulated under the assumption that the PSF can be 

approximated by means of a spatially locally invariant Gaussian function [13].

The standard deviation of the Gaussian filter was randomly chosen in an empirically 

determined range of 0.4 to 0.9 mm to simulate the differences in the PSF across CT scanners 

and manufacturers, and a spatially correlated Gaussian noise was added to the image based 

on Gaussian distributed random noise smoothed with a Gaussian filter (standard deviation of 

2), with the empirically determined mean of zero and random standard deviation in a range 

[0, 40]. As a last step, the image is cropped to a 32 × 32 pixels grid, a size chosen to include 
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enough neighborhood information for big structures, without losing specificity for small and 

thin features.

The generated patch is then passed to an neural generator that is meant to improve the 

realism of the synthetic airway while preserving its main characteristics by comparing it to 

unlabeled real airways extracted from clinical CTs. To this end, a generative adversarial 

network (GAN) approach is leveraged to add realism.

A pixel-to-pixel fully convolutional neural network with ResNet blocks is used as generator, 

G (purple box in Fig. 1), which is trained with an adversarial loss with self-regularization 

(originally introduced in [14]) to preserve the patch global structure. By minimizing the 

generator’s loss function, G tries to “fool” a discriminator network, D (yellow box in Fig. 1), 

into classifying the refined airways as real. This is modeled as a minimax game, where the 

weights of G and D (optimized through a binary cross-entropy loss) are updated alternately.

Following the approach presented in [14], the receptive field of D is also limited to local 

regions, so that multiple local adversarial losses per image are considered. Also, to improve 

the stability of the network, a mini-batch of refined images (randomly selected from a buffer 

of refined images generated on previous iterations) are included into the training batch. An 

example of the refining step result is shown in Fig. 2c.

To train this model-based GAN, we extracted 273,600 real airways patches of 32 × 32 pixels 

and a resolution of 0.5 mm on the reformatted axial plane of 30 clinical CTs, using the 

multi-resolution particles method described in [5], initialized with the feature enhancement 

technique of [9]. We then trained the adversarial network for 10,000 steps using a batch size 

of 512, a stochastic gradient descent update and learning rate of 0.001, until real and 

synthetic patches become indistinguishable by D.

Once G is trained, 2,500,000 training and 1,000,000 validation synthetic patches are 

generated and automatically refined while training the airway regressor, AR, to learn airway 

and cartilage characteristics. To this end, a 9-layer 2D network consisting of seven 

convolutional layers and two fully-connected layers, (see the blue box in Fig. 1) is used. An 

Adam update (β1 = 0.9, β2 = 0.999, ϵ = 1e−08, decay = 0.0), a learning rate of 0.001, and a 

customized loss function that combines accuracy and precision, as presented in [8], were 

used to train AR for 100 epochs with a batch size of 1,000:

ℒ(y, y) = 1
N × M ⋅ ∑

i = 0, j = 0

N, M yi, j − yi, j
yi, j

+ 2.0 ⋅ 1
N

⋅ ∑
i = 0

N 1
M ⋅ ∑

j = 0

M
yi, j − yi, j

2 − 1
M ⋅ ∑

j = 0

M
yi, j − yi, j

2 (3)

where N is the total number of images, M is the number of augmented replicas for each 

original patch, and y and y indicate the true and the predicted values, respectively. In this 

work, M = 25 has been used.
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Finally, in order to help the network focus more on geometry than intensity values, during 

training we applied a data augmentation that in addition to randomly inverting intensity 

values inside the patches it also randomly shifts and flips the images.

All networks were trained on a NVIDIA Titan X GPU machine, using the deep learning 

framework Keras [2] on top of TensorFlow [1].

2.1 Experimental Setup

To evaluate the proposed approach, we used both synthetic and in-vivo experiments. To 

demonstrate that having a more accurate airway geometric model helps the neural network 

better measure the structures of interest, we first generated a dataset of 200,000 synthetic 

patches and we compared the mean relative error (RE) obtained with the proposed MBGR 

and with the same network trained with a model without the cartilage.

For validation on clinical cases, since a reliable ground-truth cannot be obtained in an 

accurate way, we performed an indirect validation that leverages a physiological evaluation 

and demonstrates the clinical relevance of the proposed technique.

We analyzed the associations between the amount of cartilage in bronchi of various orders 

and the presence of COPD in 547 smoking subjects with and without COPD. To this end, we 

propose a cartilage index defined by the regression coefficient in a random sample 

consensus (RANSAC) regression [3] between the airway lumen and cartilage percentage 

across airway points with a lumen radius lr ∈ [1.19, 3.95] mm, similar to what was proposed 

for the Pi10 calculation [7]. Subjects whose regression fitting was poor (R2 < 0.8) were 

excluded from the analysis. The total number of subjects after exclusion was 390. An 

example of regression for one case is shown in Fig. 3a.

3 Results

The mean absolute RE obtained with MBGR for wall thickness, airway lumen, and cartilage 

percentage across the 200,000 generated patches was 6.19%, 1.73%, and 11.75%, 

respectively. If the geometric model is generated excluding the cartilage simulation 

(cartilage percentage set to 0%), the RE was 7.25% for wall thickness and 2.95 for lumen. 

When considering airways with a wall thickness of1.0 mm, a mean absolute RE of 6.47% is 

obtained with the proposed MBGR and 7.93% with the same version without cartilage, 

whereas when the wall thickness is at the image resolution (0.5 mm) the mean absolute RE 

was at 12.90% for the proposed method and 13.09% if cartilage is not simulated. These REs 

are significantly lower than those previously reported in the literature for structures of 

similar sizes [10,11].

Figure 3b shows the results of the association between the cartilage index and GOLD 

disease stage stratified by gender. A multi-factor analysis of variance (ANOVA) shows that 

both GOLD and gender are statistically significant factors (p < 0.0001 and p = 0.035 

respectively) but not their interaction. A pair Tukey’s t-test analysis between GOLD stages 

shows that all pairs are statistically significant except GOLD 0–1, 2–3, and 3–4. This 
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suggests a tendency of cartilage loss in moderate to severe COPD that is consistent in both 

males and females.

Finally, an example of airway segmentation color-coded by the amount of cartilage for five 

subjects (one for each GOLD level) is presented in Fig. 4. In this example, it is possible to 

notice a bigger amount of cartilage (around 50%) in peripheral airways of subjects with no 

or little COPD (GOLD 0 and 1) while this percentage decreases in subjects with more 

disease as suggested by our numerical results.

4 Discussion and Conclusion

In this paper, a novel method to automatically assess the amount of cartilage in small 

airways on chest CT images, while simultaneously measuring lumen radius and the wall 

thickness is proposed. A generator of a geometric model is used to create synthetic patches 

that are then automatically refined using a GAN refiner and used to train a regressor of the 

measures of interest. This is the first time that an automated approach is proposed for the 

assessment of in-vivo airway cartilage. Our results show that the cartilage area percentage 

had a small relative error. The indirect validation with subjects with and without COPD 

showed consistent results with results previously reported in histological studies. These 

findings indicate that the method here proposed may potentially be used to help physicians 

toward early diagnosis and prognosis of lung disorders.

Results from the validation on synthetic patches showed a lower absolute relative error for 

bronchial lumen and wall thickness when the cartilage is included in the geometric model, 

indicating that creating a more accurate geometric model helps the network better regress 

the structures of interest.

For future work, we are planning on improving in-vivo validation by comparing the MGBR 

regression of the three structures to manual measurement, improve the generation of the 

synthetic model by reducing the level of approximation of the PSF and additive noise, and 

define a method to properly validate the refining process of the synthetic patches, which is 

currently done only by visual inspection.
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Fig. 1. 
Workflow of the model-based GAN regressor. MBG (green square) indicates the model-

based generator that creates the synthetic airways (black box), G (purple box) is the image-

to-image generator, D (yellow box) is the discriminator, and AR (blue box) represents the 

airway regressor that provides the 4 airway morphology measurements. In the big squares 

the schemes of the three neural networks used in this paper are presented. C indicates a 2D 

convolutional layer, FC a fully connected, MP stands for max pooling, and s indicates the 

layer’s strides.

Nardelli et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2020 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
An example of generated synthetic airway patch with cartilage mimicking (lumen radius = 

3.5 mm, wall thickness = 2.55 mm, cartilage amount = 38%). The geometry model (a) is 

generated at a super resolution of 0.05 mm/pixel in a sampling grid of 640 × 640 pixels. A 

point spread function (PSF) is then simulated to obtain the final resolution of 0.5 mm/pixel, 

the patch is cropped to a 32 ×32 pixels grid (b), and the GAN makes it more realistic (c). An 

example of airway from a CT is shown in (d).
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Fig. 3. 
(a) Example of RANSAC regression in comparison to linear regression. The cartilage 

percentage is plotted against the lumen radius in the range [1.19, 3,95]. (b) Results for the 

indirect validation on 390 smoking subjects with and without COPD.
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Fig. 4. 
Example of airway segmentation color-coded by the percentage of cartilage for 5 subjects 

based on the COPD level.
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Table 1.

Parameter ranges used for the creation of the airway model. All values were uniformly distributed within the 

specified ranges. LR stands for lumen radius, WT for airway wall thickness, and CWT indicates the cartilage 

wall thickness.

Parameter Range

LR [0.5, 6.0] mm

WT [0.1 * LR + 0.2, 0.3 * LR + 1.5] mm

CWT [0.01 * WT, 0.6 * WT] mm

Number of vessels [0, 2]

Vessel radius [LR, LR + 0.8] mm

Skewness of reconstruction [−40, 40] degrees

Airway Lumen Intensity [−1100, −1050] HU

Airway Wall Intensity [−500, −100] HU

Cartilage Intensity [−250, 50] HU

Vessel Intensity [−50, 50] HU
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