
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signed Laplacian Deep Learning with Adversarial Augmentation
for Improved Mammography Diagnosis
Citation for published version:
Li, H, Chen, D, Nailon, WH, Davies, ME & Laurenson, DI 2019, Signed Laplacian Deep Learning with
Adversarial Augmentation for Improved Mammography Diagnosis. in Medical Image Computing and
Computer Assisted Intervention – MICCAI 2019: 22nd International Conference, Shenzhen, China, October
13–17, 2019, Proceedings, Part VI. Lecture Notes in Computer Science, vol. 11769, Springer, pp. 486-494,
22nd International Conference on Medical Image Computing and Computer Assisted Intervention,
Shenzhen, China, 13/10/19. https://doi.org/10.1007/978-3-030-32226-7_54

Digital Object Identifier (DOI):
10.1007/978-3-030-32226-7_54

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1007/978-3-030-32226-7_54
https://doi.org/10.1007/978-3-030-32226-7_54
https://www.research.ed.ac.uk/en/publications/e6a7f4bd-1c95-41b2-a4f2-2a292e0d2df4


Signed Laplacian Deep Learning with
Adversarial Augmentation for Improved

Mammography Diagnosis

Heyi Li1?, Dongdong Chen1*, William H. Nailon2,
Mike E. Davies1, and David I. Laurenson1

1 Institute for Digital Communications, University of Edinburgh, Edinburgh, UK
{Heyi.Li,d.chen, dave.laurenson, mike.davies}@ed.ac.uk

2 Oncology Physics Department, Edinburgh Cancer Centre, Western General
Hospital, Edinburgh bill.nailon@luht.scot.nhs.uk

Abstract. Computer-aided breast cancer diagnosis in mammography
is limited by inadequate data and the similarity between benign and
cancerous masses. To address this, we propose a signed graph regularized
deep neural network with adversarial augmentation, named DiagNet.
Firstly, we use adversarial learning to generate positive and negative
mass-contained mammograms for each mass class. After that, a signed
similarity graph is built upon the expanded data to further highlight the
discrimination. Finally, a deep convolutional neural network is trained
by jointly optimizing the signed graph regularization and classification
loss. Experiments show that the DiagNet framework outperforms the
state-of-the-art in breast mass diagnosis in mammography.

Keywords: Deep learning ·Mammography Diagnosis ·Adversarial learn-
ing · Graph regularization

1 Introduction

Breast cancer is one of the most frequently diagnosed mortal diseases for women
all over the world [6]. Mammography is extensively applied and computer-aided
diagnosis systems (CADs) are often employed as a second reader. Leveraging the
recent success of deep neural networks on representation learning, deep learning
based CADs [7,11,12,16,17,20] outperform traditional methods, which rely heav-
ily on handcrafted features. However, two major challenges in mammographic
CADs remain (1): limited access to well annotated data [7] and (2): the similar-
ity between benign and cancerous masses. To alleviate the impact of inadequate
data, [7,11,12,20] applied classical geometric transformations for data augmenta-
tion (e.g. flips, rotations, random crops etc), and more recently, [16,17] generated
synthetic images on the manifold of real mammograms using adversarial learning
[9], which enjoys a powerful ability to learn the unknown underlying distribution.
Unfortunately, the following questions remain unanswered: What kind of data
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augmentation is most helpful for CADs in mammography? How can we alleviate
the impact of the similarity between data, i.e., how can we maximize the margin
between manifolds with a small difference?

In this paper, we propose a new deep learning framework that improves mam-
mography diagnosis as follows. Firstly, we propose an adversarial data augmen-
tation strategy, in which both positive and negative samples of specific classes
are generated in an unsupervised manner, in order to make more distinct bound-
aries between different classes. After that, we build a signed graph Laplacian over
the augmented data to quantitatively capture the geometric structure of data.
Finally, we train a deep neural network by jointly optimizing the graph regular-
ization and classification loss, by which the intra-class difference is minimized,
and more importantly, the inter-class manifold margin is maximized in the deep
representation space. Extensive experiments show that the proposed DiagNet
outperforms the state-of-the-art of breast masses diagnosis in mammography.

2 Preliminary

2.1 Adversarial learning

Adversarial learning is a technique that attempts to fool models through mali-
cious input [10] and has achieved impressive results in representation learning.
The key idea of the success of a Generative Adversarial Network (GAN) is to
force the output of the generator to be indistinguishable from the real input [9].
Adversarial training is particularly powerful for image generation, and for learn-
ing unknown and complicated distributions from the training data. In this paper,
we propose to use adversarial learning to generate off-distribution instances along
with on-distribution instances in order to enlarge the medical image data.

2.2 Manifold Learning

In real applications, data typically reside on a low-dimensional manifold embed-
ded into a high-dimensional ambient space [15]. Manifold learning is extensively
explored because of its effectiveness for preserving the topological locality, which
relies on the assumption that neighbors tend to have the same labels [3]. In
this paper, we aim to incorporate graph embedding into a deep neural network
as a regularizer in the latent space. In addition, local data manifold structure
preservation within the hidden representations in deep neural networks offers
the possibility of improving the performance of the classifier [4].

3 Proposed Method

In this section, we formally introduce the details of DiagNet, which is composed
of three steps as shown in Fig.1: (1) adversarial augmentation, (2) a signed
graph Laplacian built upon the augmented data and (3) joint optimization of the
classifier loss and signed graph regularizer. We first define the notation applied
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Fig. 1: The proposed DiagNet for Breast Mass Diagnosis. (a) the framework of
the proposed algorithm, which consists of three steps. {x1, x2} and {x3, x4} are
samples on benign manifold Mb and malignant manifold Mm respectively. In
the first step, i.e. adversarial data augmentation, positive neighbors {x5, x7} and
negative neighbors {x6, x8} are generated with (1) and (2) respectively. Then a
signed graph is built upon both original and augmented samples as (3). Finally,
a joint loss (6) is optimized in the deep latent space, maximizing data manifold
margin. (b) The utilized deep network architecture. “DC block” represents a
down-sampling convolutional block, “RC block” is a residual convolutional block,
and “SConv” is separable convolutions.

throughout the paper. Let {X,Y } = {xi, yi}ni=1 be the n mammograms with
corresponding labels, where xi ∈ RH×W is an image sample and yi ∈ {yc}Cc=1 is
the class label. Let {Xc, yc} denote the c-th class data.

3.1 Adversarial Augmentation

As also mentioned in section 1, inadequate data and the similarity between
benign and cancerous masses [7] are two main reasons causing high false pos-
itives in mammographic CADs. Recently, [1, 16, 17] employed GANs to create
new instances. Even though they generated on-distribution samples that are not
separable by discriminators, they ignored the importance of distinguishable but
similar instances, which tend to improve the discriminative ability. To overcome
this shortcoming, as shown in Fig.1(a), we propose to use adversarial learning
to generate more instances of both positive neighbors (i.e. instances on the man-
ifold, e.g. x5 and x7) and negative neighbors (i.e. instances off the manifold, e.g.
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x6 and x8). Here, there are defined two manifolds: Mb for benign images and
Mm for malignant images.

In particular, inspired by [19], we generate neighboring instances one by
one for a certain data class {Xc, yc}, c = 1, 2, · · · , C, where C = 2 in this
paper. Specifically, both positive and negative neighbors are generated based
on the noise corrupted seed points (a number of randomly selected samples
in Xc) and they are both close to the original data points. In particular, the
positive neighbors X+

c are the generated samples that cannot be separated from
Xc by a discriminator, while the negative neighbors X−c are the ones that can
be separated. Finally, the expanded dataset for class c is of the form Xc =
{Xc ∪X+

c ∪X−c }, and the whole dataset is X =
⋃

c Xc.
Let x be a desired new sample and P (x;Xc, X

+
c ) be the probability that

x is classified as class c by a discriminator trained on {Xc, X
+
c }. Similarly

P (x;Xc, X
−
c ) corresponds to a discriminator trained on {Xc, X

−
c }. Note that

X+
c and X−c are initialized as empty. In this paper, we trained two SVM classi-

fiers as the discriminators and the corresponding output probability is obtained
with logistic sigmoid of the output signed distance. Accordingly, a set of neigh-
boring instances {xt}Tt=1 of Xc are iteratively generated. In each iteration t,
the discriminator is learned and the weights are updated. After T iterations of
training, we select one desired positive neighbor x:

arg max
x

P
(
x;Xc, X

+
c ∪ {xt}Tt=1

)
− γmax{0, r1 − min

xi∈X+
c

d(x,xi)}, (1)

where d(·) is a distance measure, γ weights the distance regularization, forcing
generated points to be different with a minimum distance r1. Similarly, we select
one desired negative neighbor x, with an added distance restriction to force new
points to be scattered close to Xc:

arg min
x

P
(
x;Xc, X

−
c ∪ {xt}Tt=1

)
+ γmax{0, r2 − min

xj∈X−
c

d(x,xj)}

+ γmax{0, min
xi∈Xc

d(x,xi)− r3},
(2)

where the distance regularization forces generated points to acquire a minimum
distance r2 and maximum distance r3.

3.2 Signed graph Laplacian regularizer

Graph embedding trained with distributional context can boost performance in
various pattern recognition tasks. In this paper, we aim to incorporate the signed
graph Laplacian regularizer [2] to learn a discriminative datum representation
H(X ) by a deep neural network, where discriminative here means that the intra-
class data manifold structure is preserved in the latent space and the inter-
manifold (slightly different) margins are maximized.

Using the supervision of the adversarial augmentation in section 3.1, we build
a signed graph upon the expanded data X . Given Xc = {Xc, X

+
c , X

−
c } for class
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c, and all other classes data X−c =
⋃

t=1,··· ,C;t6=c{Xt, X
+
t , X

−
t }, for ∀xi ∈ Xc,

the corresponding elements in the signed graph is built as follows:

φij =

{
+1, xj ∈ {Xc ∪X+

c }n
+

i ,

−1, xj ∈ {X−c ∪ X−c }n
−

i ,
(3)

where the {·}n+

i ({·}n−

i ) denotes the corresponding n+ (n−) nearest neighborhood
of xi to approximate the locality of the manifold.

Then, we compute the structure preservation in the deep representation space
(directly behind the softmax layer as shown in Fig.1(b)) H = {h(xi)}Ni=1, where
N = |X |. The signed graph Laplacian regularizer is defined as following:

Jg(X , Φ) =
∑
i,j

{
φij · dist(h(xi), h(xj)), if φij > 0

max
(
0,m+ φij · dist(h(xi), h(xj))

)
, if φij < 0,

(4)

where dist(·) is a distance metric for the dissimilarity between h(xi) and h(xj).
It encourages similar examples to be close, and those that are dissimilar to have
a distance of at least m each other, where m > 0 is a margin.

Note that instead of calculating the manifold embedding by solving an eigen-
value decomposition, we learn the embeddingH by a deep neural network. Specif-
ically, inspired by the depth-wise separable convolutions [5] that are extensively
employed to learn mappings with a series of factoring filters, we build stacks of
depth-wise separable convolutions with similar topological architecture to that
in [5] to learn such deep representations (Fig.1(b)).

Therefore, by minimizing (4), it is expected that if two connected nodes xi

and xj are from the same class (i.e. φij is positive), h(xi) and h(xj) are also
close to each other, and vice versa. Benefiting from such learned discriminativity,
we train a simple softmax classifier to predict the class label, i.e.,

Jl = − 1

N

N∑
i=1

C∑
c=1

δc(yi) logP
(
yi | xi;θ

)
, (5)

where δc(yi) = 1 when yi = c, and 0 otherwise; θ is the parameter set of the
neural network.

Finally, by incorporating the signed Laplacian regularizer (4) and the classi-
fication loss (5), the total objective of DiagNet is accordingly defined as:

J = Jl + λJg, (6)

where λ ≥ 0 is the regularization trade-off parameter which controls the smooth-
ness of hidden representations.

4 Experiments

4.1 Datasets and ROIs selection

The DiagNet is evaluated on the most frequently used full-field digital mam-
mographic dataset, INbreast [13]. 107 mass contained mammograms are divided



6 H. Li et al.

into a training and a test set containing 80% and 20% of the images respectively.
As for ROIs selection, rectangular mass-contained boxes are selected with pro-
portional padding (1.6 times) upon original ROI bounding boxes. The selected
ROIs are augmented with flips and further adversarially augmented by 40% more
(20% positive neighbors and 20% negative neighbors).

4.2 Implementation Details

We first solve the proposed adversarial augmentation in (1) and (2) by the
derivative-free optimization approach RACOS algorithm [18]. The distance mea-
sure d(·) in (1) and (2) is set to be the angular cosine distance because of its
superior discriminative information [14]. Let ρ = minxi,xj∈Xc d(xi,xj), then we
set the radius parameters r1, r2 = ρ, and r3 = 3×ρ for Xc. Further T = 200 and
γ is 10−2.

Secondly, the signed graph is built upon augmented data X . For each graph
node, n+ and n− in (3) are optimally chosen as 1 and 4 respectively using grid
search. In addition, the metric dist(·) in (4) is also the angular cosine distance
and m is 1.

Finally, the deep neural network is built with stacks of 3×3 kernel-sized sep-
arable convolutional layers. The first three blocks are equipped with increasing
feature maps (128, 256, 728) and decreasing spatial squared size (224, 112, 56),
and the consecutive seven blocks keep the same feature map with size 28. After
global averaging and three fully connected layers of 1024 neurons, a softmax
layer is padded for label prediction. Dropout layers with 50% dropout rate and
weight decay with l2 norm rate 10−4 are used to prevent over-fitting. Residual
skips are added in order to solve the gradient diverging and vanishing problems.
The regularization parameter λ in (6) is optimally chosen as 1.

4.3 Results and analysis

Adversarial Augmentation: To examine the quality of generated images by
the proposed adversarial augmentation strategy, we carry out the experiment on
the INbreast dataset. Fig.2 visually shows the augmented examples. It can be
seen that, for either mass type, the generated positive and negative neighbors are
both similar to the original data, but the negative neighbors are more different.

Compare to the state-of-art: We validate DiagNet’s performance with
accuracy and AUC (area under the ROC curve) scores. Table.1 compares the
state-of-art algorithms, in which [11] is re-implemented and the results of the
remaining ones are taken from the original papers. It shows that, the Diag-
Net has achieved the state-of-art with mean accuracy 93.4% and AUC score
0.95. When compared with the second best algorithm [16], the DiagNet’s AUC
score is significantly higher with experiments on the whole dataset without any
pre-processing, post-processing or transfer learning. In addition, empirical ob-
servations show that our model is robust to noise and geometric transforms, and
these results are omitted due to the space limitation.
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(a) Benign Masses (b) Malignant Masses

Fig. 2: Generated mammogram examples by proposed adversarial augmentation
strategy. The masses in the first row of both (a) and (b) are original data,
the second and the third row are generated positive and negative neighbors,
respectively.

Table 1: Breast Mass Diagnosis performance comparisons of the proposed Di-
agNet and relative state-of-the art methods on INbreast test set.

Methodology End-to-end Accuracy AUC

(2012) Domingues et. al [8] 5 89% N/A
(2016) Dhungel et. al [7] 3 91% 0.76
(2017) Zhu et. al [20] 3 90% 0.89
(2018) Shams et. al [16] 3 93% 0.92
(2019) Li et. al [11] 3 88% 0.92

proposed DiagNet 3 93.4± 1.9% 0.950± 0.02

Importance of Signed Graph Laplacian regularizer: Determining the
optimal values of hyper-parameter is a big challenge in deep learning. To explore
DiagNet’s performance with different signed graph configurations, the values
of n+ and n− are first grid searched with fixed regularization parameter λ = 1,
as shown in Fig.3(a). The best performance occurs when n+ = 1 and n− = 4,
which increases at least by 8% the accuracy rate and by 12% the AUC score
compared to the baseline (no graph regularization, n+, n− = 0). This confirms
the effectiveness of using the signed graph regularization. In addition, results
show that the DiagNet achieves good performance only when both n+ and n−

are considered in the corresponding singed graph construction. Fig.3 shows the
performances with various values of λ, where the best result occurs at λ = 1.

5 Conclusions

In this paper, we proposed a DiagNet for improved mammogram image anal-
ysis. By integrating the signed graph regularizer and the adversarial sampling
augmentation, DiagNet works in a simple but effective way to learn discrimi-
native features. Extensive experiments show that our method outperforms state-
of-the-art on breast mass diagnosis in mammography.
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Fig. 3: Performance of DiagNet on INBreast with varying parameters. Classi-
fication accuracy and AUC score versus (a) different n+ positive neighbors and
n− negative neighbors and (b) various regularizer parameter λ.
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