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Abstract. Recent works show that Generative Adversarial Networks
(GANSs) can be successfully applied to chest X-ray data augmentation for
lung disease recognition. However, the implausible and distorted pathol-
ogy features generated from the less than perfect generator may lead to
wrong clinical decisions. Why not keep the original pathology region?
We proposed a novel approach that allows our generative model to gen-
erate high quality plausible images that contain undistorted pathology
areas. The main idea is to design a training scheme based on an image-
to-image translation network to introduce variations of new lung features
around the pathology ground-truth area. Moreover, our model is able to
leverage both annotated disease images and unannotated healthy lung
images for the purpose of generation. We demonstrate the effectiveness
of our model on two tasks: (i) we invite certified radiologists to assess the
quality of the generated synthetic images against real and other state-
of-the-art generative models, and (ii) data augmentation to improve the
performance of disease localisation.

1 Introduction

Chest X-ray images are the most commonly used method for lung disease di-
agnosis. Nowadays, deep learning neural network models are available for in-
vestigation of classification, segmentation and other problems in medical imag-
ing [4I3IT2]. With the rapid growth in the number of X-ray images needed to
be reviewed by radiologists in the hospital, building deep learning models as
computer-aided diagnosis tools that quickly and accurately detect the pathol-
ogy area can help reduce the workload of radiologists. Training a robust deep
learning model requires a large number of high quality samples with accurate
pathology information. However, it is difficult to obtain enough medical images
because many diseases are rare.

Generative Adversarial Networks (GANs) [6] have become a new technique to
perform data augmentation. Compared with the traditional mathematical data
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augmentation methods, such as rotations, translations, reflections and adding
Gaussian noise [9], the advantage of GANs is that the models can generate
new synthetic data with much larger diversity. Various GAN models have been
proposed to generate synthetic images for data augmentation. Image-to-image
translation models such as StarGAN [I] and CycleGAN [I4] have been applied
on CelebA [I0] to generate new face images. DCGAN [I1] has been applied in
the chest X-ray imaging domain to perform data augmentation, showing im-
provement in disease classification accuracy [12/5].

Although the discussed data augmentation methods can improve recognition
performance for some tasks, it is difficult to explain whether the augmented im-
ages benefit the model regularisation or discrimination. This is because medical
images generated by DCGAN do not look visually plausible and vital disease
features are missing. This would not be an issue for a general dataset such as
ImageNet [2] or a face dataset such as CelebA, because deep learning models can
make correct decisions based on the overall and contextual features. However,
in the medical domain, clear and distinguishable biomarkers and pathological
evidence are crucial to driving clinical decisions. To the best of our knowledge,
none of the aforementioned GAN models can fully retain undistorted pathology
areas for newly generated images.

To address the above issues, we employ an idea similar to image inpainting by
generating regions around the undistorted pathology area with a pairwise image-
to-image translation (Pix2Pix) model [§]. We leverage the limited number of
bounding box labelled pathology data and unlabelled healthy data from the NIH
Chest X-ray dataset [I3] to create a set of artificial paired training images to fit
into the training process of the Pix2Pix model. Our proposed approach is shown
in Fig. [1l The generated chest X-ray images from our proposed method contain
visually plausible lung structures and pathology evidence. We validate and show
the superior performance of our model through two experiments: (i) a radiologist
assessment test and (ii) data augmentation for lung disease localisation.

2 Methodology

2.1 Image-to-Image Translation with GANs

Recent work in generative adversarial networks (GANs) have achieved impressive
results on image generation by using image-to-image translation [IJ§]. Image-to-
image translation learns a mapping from an input image x to a target output
image y. Our target is to generate new disease training samples & stemming
from the original samples x via the image-to-image translation framework. In
this work, we use Pix2Pix GAN as our main image generation framework.

Pix2Pix GAN Loss. The loss function for Pix2Pix consists of two parts. The
first part is the adversarial loss, which is for the discriminator D to ensure the
synthetic image & = G(z) generated by the generator can be distinguished from
the original target real image y. Further, the generator G is trained to minimise
the adversarial loss to make the synthetic image more plausible. Therefore, D
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Fig. 1. The black arrows indicate the training process: for StarGAN (top), which is our
baseline, the generator is given unpaired chest X-ray images to perform healthy image
to diseased image translation. For our proposed Pix2Pix model (bottom), the generator
is given an input image with the masked pathology area and is trained to produce a
complete X-ray image with the surrounding lung details. The red arrows indicate the
evaluation process: we invite two radiologists to act as ‘human discriminators’ to assess
the quality of our synthetic images. We also use a Faster R-CNN model to measure
the performance of our approach on data augmentation for disease localisation.

and G update iteratively against each other with the following objective function:
Laan(G, D) = Eqyllog D(z,y)] + Ez[log(1 — D(z, G()))), (1)

where G is trying to minimise this objective against D, which tries to maximise
it. [8]. In addition, the Pix2Pix model includes a traditional construction loss,
L1 distance, to ensure the quality of generated synthetic images:

L11(G) = Eqay[lly — G(2)|1]. (2)
Therefore, the full objective function for Pix2Pix is:

G*,D* = arg ménmngGAN(G, D)+ AL11(G). (3)

2.2 Pulmonary Pathology Data Augmentation

The key feature that makes the Pix2Pix model powerful in generating high qual-
ity synthetic images is that Pix2Pix requires paired images to learn the mapping
from input to output images [8]. However, it is almost impossible to obtain many
chest X-ray training pairs with the same patient ID and perfect alignment of the
two lungs, but containing two different conditions. To address this issue, we de-
sign an image in-painting method to craft artificial paired training images using
the limited number (820 across 6 diseases) of bounding box annotated images



4 Y.Xing, Z.Ge, et al.

from the NIH dataset [I3]. Our idea is simple but effective: we let Pix2Pix learn
how to recover the missing regions around the known pathology area with vi-
sually plausible image structures and textures. Each iteration, the model will
generate new synthetic images with the same undistorted pathology area, which
is vital to diagnose or localise pulmonary diseases, but with variations in the
surrounding area. Therefore, the Pix2Pix generated images can be used as extra
training samples to augment the training data.

Creating Artificial Pairwise Training Images. We take each of the anno-
tated images y € [1,..., N] as the the target output images and create a ‘pathol-
ogy area only’ image x with binary image mask m. Input image z is constructed
from the raw images as x < y ®m. Mask m replaces the area outside the bound-
ing box with zero values, keeping the area inside the mask unchanged. We use
this ‘pathology area only’ image x and the corresponding original image ¥y to cre-
ate a training pair (z,y). This allows us to perform image-to-image translation
on the pairwise images.

Training Pix2Pix with Artificial Training Pairs. During training, we pre-
process the data to prepare training pairs (z,y). Generator G takes z as in-
put, and outputs predicted image r = G(z) with the same size as the in-
put. Combining image # with the input image x, we get the new output = <
x4+ G(x) ® (1 —m). Then we train the discriminator with the adversarial loss to
try to distinguish between the generated image  and the real image y. We step
the gradient descent algorithm on the discriminator and generator alternatively.
The training procedure is shown in Algorithm [I] This training scheme means
that the vital pulmonary pathology features from the original image bounding
box are undistorted and well-retained in the generated synthetic images. This
lowers the difficulty of the generator training. After employing our training tech-
nique, the generator only needs to learn how to reconstruct the surrounding lung
features outside of the pathology area.

Algorithm 1 Training of pulmonary pathology data augmentation.
1: while G has not converged do
2: fori=1,..N do
Sample target images y; from the data with bounding box annotation;
Extract masks m; for y; according to annotations;
Construct inputs z; < y; © my;
Craft training pairs (z,y:);
Get predictions Z; < z; + G(z;) ® (1 — m;);
Calculate gradients for G and D;
Update G, D;

Adding Unannotated Healthy Samples. The primary goal of our Pix2Pix
model is to retain undistorted pathology area and to train the generative model
only to learn how to generate the lung features. To further extend the number
of training samples, we discover that adding normal healthy lung X-ray images
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Fig. 2. Samples of real images and synthetic images generated by StarGAN and our
models (Pix2Pix and Pix2Pix-N).

with random cropping areas into the training set can increase the quality of the
synthetic images. By following the same training procedure in Algorithm 1, we
add an extra 2,000 healthy lung X-ray images ¢ and randomly generate masks
m with reasonable size. Healthy pairwise images (& + § ® 1, ) are sampled
along with disease images in Line [3] of Algorithm 1.

Comparing with StarGAN. In this paper, we compare our proposed genera-
tive method to another image-to-image translation GAN, StarGAN [I], which is
based on CycleGAN [I4]. The main advantage of either CycleGAN or StarGAN
is that they can be trained using unpaired images. Bounding box annotations
are not required to translate an image with a given disease label into other dis-
ease labels. The unique features belonging to a certain category are supposed
to be learned implicitly during model training. Since the generator G and dis-
criminator D are less than perfect, the structure and texture information of
some pulmonary disease translations are not always correct, especially for dis-
eases that have high intra-class variations, such as Pneumonia. This approach
works well on tasks such as face generation; people are capable of recognising
the identity in the generated image even with some misleading contents. How-
ever, this may lead to a catastrophic outcome when a deadly disease can not
be recognised because of blurry or inaccurate generated pathology evidences.
This is the reason we propose the generating mechanism to keep the most vital
pathology information undistorted. The pairwise training requirement of PixPix
guarantees the ‘upper bound’ that CycleGAN can achieve [I4]. The training and
evaluation procedures for our Pix2Pix model are shown in Fig. [f}
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3 Experiments

Dataset. We use the NIH Chest X-ray dataset [I3], which is by far the largest
publicly available chest X-ray dataset. It consists of 112,120 frontal-view chest
X-ray images with 14 disease categories and the healthy category. Each image is
labelled with one or multiple diseases. The dataset also contains 984 bounding
box annotations for 880 images corresponding to eight disease categories. We
use the bounding box annotated images to create a training set for our Pix2Pix
model. However, for two diseases among those eight disease categories, the num-
ber of bounding box annotations is too little and is not sufficient to train the
Pix2Pix model. As such, we remove those two diseases from our training set. The
final training set we use for our model contains 820 bounding box annotations
for 741 images over six pathologies.

Implementation. We train two Pix2Pix models that use different training sets.
We use 70% of the original 820 bounding box annotations as the training set
for our Pix2Pix models and localisation model, amounting to 573 training an-
notations. The remaining 30% of annotations are used as the testing set for the
localisation model. Our first model, Pix2Pix, is trained with only the 573 anno-
tated images. Our second model, Pix2Pix-N, is trained with the 573 annotated
images and 2,000 healthy images with randomly generated bounding boxes. The
sample images generated by each model are shown in Fig. [2 We downsize the
original images from 1024 x 1024 to 256 x 256 for fast processing. We also apply
mathematical transformations, including rotations, reflections and cropping, to
add variation into the network.

3.1 Qualitative Analysis

We invite two clinicians, R1 and Rﬂ to verify the quality of the synthetic images
generated by our proposed models. To compare the performance of our Pix2Pix
models to other generative models, we use StarGAN as a baseline. We provide the
radiologists with a verification set contains six pathologies with 100 images each.
The verification set is comprised of 150 real images from the NIH dataset and
three sets of 150 images generated by each of the generative models (StarGAN,
Pix2Pix and Pix2Pix-N).

Fig[2]shows qualitative illustrations and Table[I]shows the number of images
that the radiologists identify as real from each source. From Table[I] we observe
that both R1 and R2 are good at picking real chest X-ray images. It is found
that either Pix2Pix or Pix2Pix-N surpasses StarGAN by a large margin (15|0
vs. 108|45). This shows: 1) the merits of keeping undistorted pathology infor-
mation, and 2) Pix2Pix based models produce plausible reconstructions of the

3 R1 is a certified radiologist with 10 years of experience. R2 is a radiology registrar
who also has two years of experience with deep learning. To ensure fairness, all
of the real and generated images are cropped to remove most of the artefacts and
downsized to 224 x 224. The radiologists are not aware of the disease prevalence or
the proportion of real and fake images in the test set. The radiologists are asked to
work independently to distinguish whether each image is real or fake.
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Table 1. Radiologist assessment results. The two values for each element are the
number of images predicted as real by R1|R2, respectively. For the generative models
(StarGAN, Pix2Pix and Pix2Pix-N), larger values indicate better performance.

Pathology Real Data StarGAN Pix2Pix Pix2Pix-N
Atelectasis 25|25 2|0 12]2 19/6
Cardiomegaly 25|25 2|0 184 21|8
Effustion 25(24 500 11)3 176
Infiltration 25|25 6]0 1113 18|10
Pneumonia 25|25 0o 14]4 19]11
Pneumothorax 25|25 0|0 13]2 14]4
Total 150[149 15]0 79|18 108|145

surrounding lung features. Pix2Pix-N performs better than Pix2Pix, showing the
necessity to include more healthy images for model generalisation. Finally, R2 is
better than R1 at recognising the generated images as fake. This is likely because
R2 has two years of research experience with GANs and is good at recognising
GAN artefacts.

3.2 Disease Localisation

In this section, we investigate the effectiveness of synthetic images generated by
our proposed model on the task of pathology localisation. A Faster-RCNN [7]
built on InceptionV2-ResNet is used as the detection model. We train the detec-
tion model using three different dataset augmentation protocols: original (Ori),
Ori+Pix2Pix, and Ori+Pix2Pix-N. Ori uses the original images (573 in to-
tal) from the NIH dataset. Ori+Pix2Pix contains all real images and 688 syn-
thetic images obtained from our Pix2Pix model. Ori+Pix2Pix-N is composed of
all real images and 688 synthetic images obtained from our Pix2Pix-N model.
For fair comparison, all protocols use the same parameters to perform the Faster-
RCNN training. Specifically, all datasets are resized to 256 x 256 without any
further augmentation. The learning rate is 0.0003 and the batch size for each
training step is 2. The evaluation dataset consists of 247 real images. To clearly
observe the trends of the performance of each dataset, correct location (CL)
accuracy computed at an intersection over union (IoU) of 0.1 is chosen as the
evaluation metric, as per [I3]. To reduce the chance of performance oscillation,
the results reported at a given training step s are selected from the best model
in a step range [s — 500, s + 500].

Table |2 shows the disease localisation performance. The synthetic augmen-
tation protocol Ori+Pix2Pix-N performs the best among all three datasets in
terms of model performance and convergence. It significantly improves the dis-
ease localisation accuracy and convergence speed of the Faster-RCNN model. We
conjecture that images generated from pathology annotated images and healthy
images explicitly carry useful pathology information from the real data distribu-
tion, which is crucial for deep model localisation training. The Ori4+Pix2Pix
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Table 2. Disease Localisation results of Ori, Ori+Pix2Pix, Ori+Pix2Pix-N datasets.
CL@%! is the best correct location accuracy computed at an IoU of 0.1 and selected
from [s — 500, s 4+ 500] steps.

Ori Ori+Pix2Pix Ori+Pix2Pix-N
Pathology cLag;! craly, cLaly, cLad! craj) cLaly, cLa! cLafl cral,
Atelectasis 0 0 0.018 0 0 0 0 0.018 0.111
Cardiomegaly ~ 0.636  0.818  0.818 0.613 0.750 0.681 0.636 0.840 0.863
Effusion 0.173  0.217  0.304 0.173  0.195 0.130 0.239 0.282 0.326
Infiltration 0.378 0432 0459 0.297 0.351 0.324 0.405 0.513 0.594
Pneumonia 0.333 0.305 0.305 0.194 0.250 0.277 0.166 0.361 0.527
Pneumothorax 0.031  0.033  0.066 0 0 0.033 0.033 0.033 0.100
Total 0.259 0.301  0.328 0.213 0.234 0233 0.235 0.323 0.405

performed the worst among three training strategies. This is probably because
synthetic disease images overfit the model training and increase the data bias.

4 Conclusion

In this paper, we proposed a model to perform data augmentation on pairwise
chest X-ray images by using an image-to-image translation model (Pix2Pix). Our
approach is able to generate high quality and plausible synthetic images with
undistorted pathology areas, which is crucial for disease diagnosis and pathol-
ogy area localisation. Our experimental results show that the synthetic images
generated by our model are of a greater quality than those generated by Star-
GAN and can significantly improve the performance of a deep learning disease
localisation model on unseen data.
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