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Abstract

Conversational semantic parsing over tables requires knowl-
edge acquiring and reasoning abilities, which have not been
well explored by current state-of-the-art approaches. Moti-
vated by this fact, we propose a knowledge-aware semantic
parser to improve parsing performance by integrating var-
ious types of knowledge. In this paper, we consider three
types of knowledge, including grammar knowledge, expert
knowledge, and external resource knowledge. First, gram-
mar knowledge empowers the model to effectively replicate
previously generated logical form, which effectively handles
the co-reference and ellipsis phenomena in conversation Sec-
ond, based on expert knowledge, we propose a decomposable
model, which is more controllable compared with traditional
end-to-end models that put all the burdens of learning on
trial-and-error in an end-to-end way. Third, external resource
knowledge, i.e., provided by a pre-trained language model or
an entity typing model, is used to improve the representation
of question and table for a better semantic understanding. We
conduct experiments on the SequentialQA dataset. Results
show that our knowledge-aware model outperforms the state-
of-the-art approaches. Incremental experimental results also
prove the usefulness of various knowledge. Further analysis
shows that our approach has the ability to derive the meaning
representation of a context-dependent utterance by leveraging
previously generated outcomes.

Introduction
We consider the problem of table-based conversational ques-
tion answering, which is crucial for allowing users to interact
with web tables or a relational databases using natural lan-
guage. Given a table, a question/utterance1 and the history
of an interaction, the task calls for understanding the mean-
ings of both current and historical utterances to produce the
answer. In this work, we tackle the problem in a semantic
parsing paradigm (Prolog 1996; Wong and Mooney 2007;
Zettlemoyer and Collins 2009; Liang 2016). User utterances
are mapped to their formal meaning representations/logical
forms (e.g. SQL queries), which could be regarded as pro-
grams that are executed on a table to yield the answer. We

∗ Work is done during internship at Microsoft Research Asia.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In this work, we use the terms “utterance” and “question” in-
terchangeably.

Q1: Which city hosted the Summer Olympics in 2008?

SQL1:  SELECT City WHERE Year = 2008

A1: Beijing

Q2: How many nations participated that year?

SQL2: SELECT Nations WHERE Year = 2008

A2: 204

Q3: How about 2004?

SQL3: SELECT Nations WHERE Year = 2004

A3: 201

Year City Country Nations

1896 Athens Greece 14

1900 Pairs France 24

2004 Athens Greece 201

2008 Beijing China 204

2012 London UK 204

1st turn

2nd turn

3rd turn

Figure 1: A running example that illustrates the input and
the output of the problem.

use SequentialQA (Iyyer, Yih, and Chang 2017) as a testbed,
and follow their experiment settings which learn from deno-
tations (answers) without access to the logical forms.

The task is challenging because successfully answering
a question requires understanding the meanings of multi-
ple inputs and reasoning based on that. A model needs to
understand the meaning of a question based on the mean-
ing of a table as well as the understanding about historical
questions. Take the second turn question (“How many na-
tions participate in that year?”) in Figure 1 as an example.
The model needs to understand that the question is asking
about the number of nations with a constraint on a particular
year. Here the year (“2008”) is not explicitly in Q2, but is
a carry over from the analyzed result of the previous utter-
ance. There are different types of ellipsis and co-reference
phenomena in user interactions. The missing information in
Q2 corresponds to the previous WHERE condition, while
the missing part in Q3 comes from the previous SELECT
clause. Meanwhile, the whole process is also on the basis
of understanding the meaning of a table including column
names, cells, and the relationships between column names
and cells.

Based on the aforementioned considerations, we present
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a conversational table-based semantic parser, abbreviated as
CAMP, by introducing various types of knowledge in this
work, including grammar knowledge, expert knowledge,
and external resource knowledge. First, we introduce gram-
mar knowledge, which is the backbone of our model. Gram-
mar knowledge includes a set of actions which could be eas-
ily used for reasoning and leveraging historical information.
We extend the grammar of Iyyer, Yih, and Chang (2017), so
that the model has the ability to copy logical form segment
from previous outputs. Therefore, our model effectively han-
dles the co-reference and ellipsis phenomena in conversa-
tion, as shown in the second and third turns in Figure 1. Sec-
ond, we use the expert knowledge to help us design model
structure. Considering that a decomposable model is more
controllable, we decompose the entire pipeline into submod-
ules which are coupled with the predefined actions in the
grammar closely. This further enables us to sample valid log-
ical forms with improved heuristics, and learn submodules
with fine-grained supervisions. Third, we introduce several
kinds of external resource knowledge to improve the under-
standing of input semantic meanings. For a better question
representation, we take advantage of a pre-trained language
model by leveraging a large unstructured text corpus. For a
better table representation, we use several lexical analysis
datasets and use the pre-trained models to give each table
header semantic type information, i.e., NER type.

We train model parameters from denotations without ac-
cess to labeled logical forms, and conduct experiments on
the SequentialQA dataset (Iyyer, Yih, and Chang 2017). Re-
sults show that our model achieves state-of-the-art accuracy.
Further analysis shows that (1) incrementally incorporating
various types of knowledge could bring performance boost,
and (2) the model is capable of replicating previously gener-
ated logical forms to interpret the logical form of a conver-
sational utterance.

Grammar
Our approach is based on a grammar consisting of prede-
fined actions. We describe the grammar in this section and
present our approach in the next section.

Partly inspired by the success of the sequence-to-action

Question1: Which city hosted the Summer Olympics in 2008?

SQL1: SELECT City WHERE Year = 2008

Action1: A1(City) A2(Year) A3(=) A4(2008)

Question2: How many nations participated that year?

SQL2: SELECT Nations WHERE Year = 2008

Action2: A1(Nations) A6

Question3: How about 2004?

SQL3: SELECT Nations WHERE Year = 2004

Action3: A5 A2(Year) A3(=) A4(2004)

Year City Country Nations

1896 Athens Greece 14

1900 Pairs France 24

… … … …

2004 Athens Greece 201

2008 Beijing China 204

2012 London UK 204

Figure 2: Examples of questions, corresponding SQL
queries and actions. The bracket following an action repre-
sent its argument.

Action Operation # Arguments
A1 SELECT-Col # columns
A2 WHERE-Col # columns
A3 WHERE-Op # operations
A4 WHERE-Val # valid cells
A5 COPY SELECT 1
A6 COPY WHERE 1
A7 COPY SELECT + WHERE 1

Table 1: Actions and the number of action instances
in each type. Operations consist of =, 6=, >,≥, <,≤
, argmin, argmax. A1 means selecting an column in SE-
LECT expression. A2, A3 and A4 means selecting a col-
umn, a operation and a cell value in WHERE expression.
A3 means select a condition operation, A4 means select a
cell value, A5 means copying the previous SELECT expres-
sion, A6 means copying the previous WHERE expression,
A7 means copying the entire previous SQL expression.

paradigm (Guu et al. 2017; Chen, Han, and Su 2018;
Suhr, Iyer, and Artzi 2018) in semantic parsing, we treat
the generation of a logical form as the generation of a lin-
earized action sequence following a predefined grammar.
We use a SQL-like language as the logical form, which is
a standard executable language on web tables. Each query
of this logical form language consist of one SELECT ex-
pression and zero or one WHERE expression. The SE-
LECT expression shows which column can be chosen and
the WHERE expression add a constraint on which row the
answer can be chosen. The SELECT expression consists of
key word SELECT and a column name. The WHERE ex-
pression, which starts with the key word WHERE, con-
sists of one or more condition expressions joined by the
key word AND. Each condition expression consists of a
column name, an operator, and a value. Following Iyyer,
Yih, and Chang (2017), we consider the following operators:
=, 6=, >,≥, <,≤, argmin, argmax. Since the SequtialQA
dataset only contains simple questions, we do not consider
the key word AND, which means the WHERE expression
only contains one condition expression.

𝑆0

A1

end states

start state𝑆0

A2 A3 A4

A6

A5

A7

A2

A2

Figure 3: Possible action transitions based on our grammar
as described in Table 1.

We describe the actions of our grammar in Table 1. The
first four actions (A1-A4) are designed to infer the logical
forms based on the content of current utterance. Thus they
could be used to handle the context independent questions



Which city hosted the 

Summer Olympics in 2008?

Current Question 

Controller A1 (arg=col) A2 (arg=col)

Column 
Prediction

A3 (arg=op) A4 (arg=value)

Operator 
Prediction

Value 
Prediction

sketch

……

SELECT 𝑆𝐸𝐿𝐸𝐶𝑇 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟

WHERE 𝑊𝐻𝐸𝑅𝐸 𝑌𝑒𝑎𝑟 = 2008

SELECT+WHERE 𝑆𝐸𝐿𝐸𝐶𝑇 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑊𝐻𝐸𝑅𝐸 𝑌𝑒𝑎𝑟 = 2008

Which city hosted the 

Summer Olympics in 2008?
How many nations 

participated that year?

Previous Question Current Question 

Controller A1 (arg=col) A6 (arg=previousWhere)

Column 
Prediction

CopyWhere

Year CountryCity Nations

sketch

(a)

(b)

Figure 4: Overview of our model architecture. Part (a) shows how we handle a single turn question. Part (b) shows how we
handle question that replicates logical form segment from the previous utterance.

such as first question in Figure 2. The last three actions are
designed to replicate the previously generated logical forms.
For example, the second question in Figure 2 carry over the
previous WHERE expression and interpret the SELECT ex-
pression based on the content of the second turn. Similarly,
the third question in Figure 2 use the the previous SELECT
expression and infer the WHERE expression based on the
third turn. The numbers of arguments in copying actions are
all equals to one because the SequtialQA dataset is com-
posed of simple questions. Our approach can be easily ex-
tend to complex questions by representation previous logical
form segment with embedding vector (Suhr, Iyer, and Artzi
2018)

Approach
We describe our conversational table-based semantic parser,
dubbed as CAMP, in this section.

Given a question, a table, and previous questions in a con-
versation as the input, the model outputs a sequence of ac-
tions, which is equivalent to a logical form (i.e. SQL query in
this work) which is executed on a table to obtain the answer.
Figure 4 show the overview of our approach. After encod-
ing the questions into the vector representation, we first use
a controller module to predict a sketch (which we will de-
scribe later) of the action sequence. Afterwards we use mod-
ules to predict the argument of each action in the sketch. We

will describe the controller and these modules in this sec-
tion, and will also show how to incorporate knowledge these
modules.

Question Encoder We describe how we encode the input
question to a vector representation in this part.

The input includes the current utterance and the utterance
in the previous turn. We concatenate them with a special
splitter and map each word to a continuous embedding vec-
tor xI

t = Wxo (xt), where Wx ∈ Rn×|Vx| is an embedding
matrix, |Vx| is the vocabulary size, and o (xt) a one-hot vec-
tor.

We use a bi-directional recurrent neural network with
gated recurrent units (GRU) (Cho et al. 2014a) to represent
the contextual information of each word. The encoder com-
putes the hidden vectors in a recursive way. The calulation
of the t-th time step is given as follows:

−→e t = fGRU

(−→e t−1,xt

)
, t = 1, · · · , |x| (1)

←−e t = fGRU

(←−e t+1,xt

)
, t = |x|, · · · , 1 (2)

et = [−→e t,
←−e t] (3)

where [·, ·] denotes vector concatenation, et ∈ Rn, and
fGRU is the GRU function. We denote the input x as: ẽ =

[
−→̃
e |x|,

←−̃
e 1]

Inspired by the recently success of incorporating contex-
tual knowledge in a variety of NLP tasks (Peters et al. 2018b;



Peters et al. 2018a), we further enhance the contextual rep-
resentation of each word by using a language model which
is pretrained on a external text corpus. In this work, we
train a bidirectional language model from Paralex (Fader,
Zettlemoyer, and Etzioni 2013), which includes 18 million
question-paraphrase pairs scraped from WikiAnswers. The
reason why we choose this dataset is that the question-
style texts are more consistent with the genre of our in-
put. For each word x, we concat the word representaion
and the hidden state LMt of the pretrained language model.
xt = [xI

t , LMt]

Table Encoder In this part, we describe how we encode
headers and table cells into vector representations.

A table consists of M headers (column names)2 and
M ∗ N cells where N is the number of rows. Each column
consists of a header and several cells. Let us denote the k-
th headers as ck. Since a header may consist of multipule
words, we use GRU RNN to calculate the presentation of
each words and use use the last hidden state as the header
vector representation {ck}Mk=1. Cell values could be calcu-
lated in the same way.

We further improve header representation by considering
typing information of cells. The reason is that incorporat-
ing typing information would improve the predication of a
header in SELECT and WHERE expressions. Take Q2 in
Figure 1 as an example. People can infer that the header
“Nation” is talking about numbers because the cells in the
same column are all numbers, and can use this information
to better match to the question starting with “how many”.
Therefore, the representation of a header not only depends
on the words it contains, but also relates to the cells under
the same column. Specifically, we use Stanford CoreNLP
(Manning et al. 2014) to get the NER result of each cell, and
then use an off-the-shell mapping rule to get the type of each
cell (Li and Roth 2002). The header type is obtained by vot-
ing from the types of cells. We follow Li and Roth (2002)
and set the types as {COUNTRY, LOCATION, PERSON,
DATE, YEAR, TIME, TEXT, NUMBER, BOOLEAN, SE-
QUENCE, UNIT}.

Formally, every header ck also has a continuous type rep-
resentation via tk = Wto (ct), where Wt ∈ Rn×|Vt| is
an embedding matrix, |Vt| is the total number of type, and
o (ct) a one-hot vector. The final representation of a header
is the concatenation of word-based vector and type-based
vector tk, which we denote as follows.

c̃k = [ck, tk] (4)

Controller Given a current and previous question as input,
the controller predict a sketch which is an action sequence
without arguments between a starting state and an ending
state. As the number of all possible sketches we define is
small, we model sketch generation as a classification prob-
lem. Specifically, the sketch of [A1] means a logical form
that only contains a SELECT expression, which is inferred

2In this work, we use the terms “header” and “column name”
interchangeably.

based on the content of the current utterance. The sketch
of [A1 → A2 → A3 → A4] means a logical form hav-
ing both SELECT expression and WHERE expression, in
which case all the arguments are inferred based on the con-
tent of the current utterance. The sketch of [A5 → A2 →
A3 → A4] stands for a logical form that replicates the SE-
LECT expression of the previous utterance and infer out
other constituents based on the current utterance. The sketch
of [A6 → A2 → A3 → A4] represents a logical form that
replicates previous the WHERE expression, and get the SE-
LECT expression based on the current utterance. The sketch
of [A7→ A2→ A3→ A4] means a logical form that repli-
cates both SELECT expression and WHERE expression of
the previous utterance, and incorporate additional constraint
as another WHERE expression based on the current utter-
ance. Similar strategy has been proven effective in single-
turn sequence-to-SQL generation (Dong and Lapata 2018).

Formally, given the current question xcur and the previ-
ous question xpre, we use Equations 3 to get their vector
representation ẽcur and ẽpre. We treat each sketch s as a
category, and use a softmax classifier to compute p (s|x) as
follows, where Wa ∈ R|Vs|×2n,ba ∈ R|Vs| are parameters.

p (s|x) = softmaxs (Ws[ẽcur, ẽpre] + bs)

Column Prediction For action A1 and A2, we build two
same neural models with different parameters. Both of them
are used for predicting a column, just one in SELECT ex-
pressions and one in WHERE expressions. We encode the
input question x into {et}|x|t=1 using GRU units. For each col-
umn, we employ the column attention mechnism (Xu, Liu,
and Song 2017) to capture most relevant information from
question. The column-aware question information is use-
ful for column prediction. Specifically, we use an attention
mechanism towards question vectors {et}|x|t=1 to obtain the
column-specific representation for ck. The attention score
from ck to et is computed via uk,t ∝ exp{α(ck) · α(et)},
where α(·) is a one-layer neural network, and

∑M
t=1 uk,t =

1. Then we compute the context vector eck =
∑M

t=1 uk,tet
to summarize the relevant question words for ck.

We calculate the probability of each column ck via

σ(x) = w3 · tanh (W4x+ b4) (5)

p (col = k|x) ∝ exp{σ([[ẽ, eck], ck])} (6)

where
∑M

j=1 p (col = j|x) = 1, and W4 ∈
R3n×m,w3,b4 ∈ Rm are parameters.

Operator Prediction In this part, we need to pre-
dict an operator from the list [=, 6=, >,≥, <,≤
, argmin, argmax]. We regard this task as a classifi-
cation problem and use the same neural architecture in the
controller module to make prediction. For implementation,
we randomly initialize the parameters and set the softmax’s
prediction category to the number of our operators, which is
equals to 8 in this work.



Value Prediction We prediction WHERE value based on
two evidences. The first one comes from a neural network
model which has the same architecture as the one used for
column prediction. The second ones is calculated based on
the number of word overlap between cell words and question
words. We incorporate the second score because we observe
that many WHERE values are table cells that have string
overlap with the question. For example in Figure 1, both the
first and the third questions fall into this category. Formerly,
the final probability of a cell to be predicted is calculated as
a linear combination of both distributions as following,

p (cell = k|x) = λp̂ (cell = k|x) + (1− λ)αcell
k (7)

where p̂ (cell = k|x) is the probability distribution ob-
tained from the neural network and αcell

k is the overlapping
score normalized by softmax and λ is a hyper parameter.

COPYING Action Prediction As described in table 1, we
have tree copy-related actions (i.e. A5, A6, A7) to predict
which component in the previous logical form should be
copied to the current logical form. In this work this func-
tionality is achieved by the controller model because the Se-
quentialQA dataset only contains simple questions whose
logical forms do not contain more than one WHERE ex-
pressions. Our model easily extend to copy logical form seg-
ments from complex questions. An intuitive way to achieve
this goal is representing each logical form component as a
vector representation and applying an attention mechanism
to choose the most relevant logical form segment (Suhr, Iyer,
and Artzi 2018).

Training Data Collection
We describe how we collect the supervisions from question-
denotation pairs, which will be used to train each submod-
ules in this section.

The SequentialQA dataset only provides question-
denotation pairs, while our model requires question-action
sequence pairs as the training data. Therefore, we use the
following strategies to automatically generate the logical
form for each question, which is equivalent to an action se-
quence. For acquiring the logical forms which are not pro-
vided by the SequentialQA dataset, we traverse the valid
logical form space using breadth-first search following the
action transition graph as illustrated in Figure 3. For the
purpose of preventing combinatorial explosion in searching
pace, we prune the search space by executing the partial se-
mantic parse over the table to get answers during the search
process. In this way, a path could be filtered out if its answers
have no overlap with the golden answers. The coverage of
our label generation process can be seen in Table 2.

ALL POS 1 POS 2 POS 3
83.4 85.1 81.9 82.0

Table 2: Percentage of questions in the training set that could
be found at least one correct logical form.

We use two strategies to handle the problem of spuri-
ous logical forms and to favor the actions of replicating
from previous logical form segments, respectively. The first
strategy (S1) is for pruning spurious logical forms. Spuri-
ous logical forms could be executed to get the correct an-
swer but do not reflect the semantic meaning in the ques-
tion. Take question “Which city hosted Summer Olympic
in 2008?” in Figure 2 for example, a spurious logical form
would be “SELECT City WHERE Country = China”. Prun-
ing logical forms is vital for improving model performance
according to previous studies (Pasupat and Liang 2016;
Mudrakarta et al. 2018). We only keep those logic forms
whose components in the where clause have word overlap
with the words in questions. In the previous example, the
signal that “2008” appears in the question makes us choose
“SELECT City WHERE Year = 2008” as the correct log-
ical form. The second strategy (S2) is for encouraging the
model to learn sequential aspects of the dataset. We only
keep the logical form with the COPY action after pruning
spurious logical forms. The coverage of sampled correct log-
ical forms in tracing set of SequentialQA is shown in Ta-
ble 2. The average numbers of logical forms for each turn
before and after using the two strategies are given in Table 3.

SETTING POS 1 POS 2 POS 3
Basic 2.08 3.80 5.19
Basic + S1 1.96 3.56 4.92
Basic + S1 + S2 1.96 2.20 3.40

Table 3: Average number of logical forms for each question
at different turns.

Experiment
We conduct the experiments on the SequentialQA dataset
which has 6,066 unique questions sequences containing
17,553 total question-answer pairs (2.9 questions per se-
quence). The dataset is divided into train and test in an
83%/17% split. We optimize our model parameters us-
ing standard stochastic gradient descent. We represent each
word using word embedding (Pennington, Socher, and Man-
ning 2014) and the mean of the sub-word embeddings of all
the n-grams in the word (Hashimoto et al., 2016). The di-
mension of the concatenated word embedding is 400. We
clamp the embedding values to avoid over-fitting. We set the
dimension of hidden state as 200, the dimension of type rep-
resentation as 5, set the batch size as 32, and the dropout
rate as 0.3. We initialize model parameters from a uniform
distribution with fan-in and fan-out. We use Adam as our
optimization method and set the learning as 0.001.

Baseline Systems
We describe our baseline systems as follows.

Floating Parser. Pasupat and Liang (2015) build a system
which first generates logical forms using a floating parser
(FP) and then ranks the generated logical forms with a



Model ALL SEQ POS 1 POS 2 POS 3

FP 34.1 7.2 52.6 25.6 25.9
NP 39.4 10.8 58.9 35.9 24.6
DynSP 42.0 10.2 70.9 35.8 20.1

FP+ 33.2 7.7 51.4 22.2 22.3
NP+ 40.2 11.8 60.0 35.9 25.5
DynSP* 44.7 12.8 70.4 41.1 23.6

CAMP 45.0 11.7 71.3 42.8 21.9
CAMP + TU 45.5 12.7 71.1 43.2 22.5
CAMP + TU + LM 45.5 13.2 70.3 42.6 24.8

Table 4: Accuracies of all systems on SequentailQA; the
models in the top section of the table treat questions in-
dependently, while those in the middle consider sequential
context. Our method in the bottom section also consider se-
quential context and outperforms existing ones both in terms
of overall accuracy as well as sequence accuracy

feature-based model. FP is like traditional chart parser but
designed with specific deduction rules to alleviate the de-
pendency on a full-fledged lexicon.

Neural Programmer. The neural programmer (NP) (Nee-
lakantan et al. 2017) is an end-to-end neural network-based
approach. NP has a set of predefined operations, and Instead
of directly generating a logical form, this system outputs a
program consists of a fixed length of operations on a table.
The handcraft operations is selected via attention mecha-
nism (Cho et al. 2014b) and the history information is con-
veyed by an RNN.

DynSP. The dynamic neural semantic parsing frame-
work (Iyyer, Yih, and Chang 2017) constructs the logical
form by applying predefined actions. It learns the model
from annotations in a trial-and-error paradigm. The model is
trained with policy functions using an improved algorithm
proposed by Peng, Chang, and tau Yih (2017). DynSP*
stands for an improved version that better utilize contextual
information.

The experiment results related to FP and NP are re-
ported by Iyyer, Yih, and Chang (2017). The details of how
they adjust these two models to the SequentialQA dataset
can be seen in their paper. We implement there variants of
our model for comparision: CAMP is our basic framework
where no external knowledge are used. In CAMP + TU, we
incorporate type knowledge in table understanding module.
In CAMP + TU + LM, we further use contextual knowledge
in question representation module.

Results and Analysis
We can see the result of all baseline systems as well as
our method in Table 4. We show accuracy for all questions,
for each sequence (percentage of the correctly answered se-
quences of sentence), and for each sentence in particular
position of a sequence. We can see that CAMP perform-
ers better than existing systems in terms of overall accuracy.

MODELS CAMP + TU + TU + LM

CONTROLLER 83.5 83.5 84.8
SELECT-COL 82.5 83.4 83.7
WHERE-COL 35.0 35.9 36.6
OPERATION 69.7 69.7 70.2
VALUE 21.2 21.2 21.5

Table 5: Accuracy for each module in different settings.

Q1:  On what dates did the football team play?

SQL1: SELECT Date

Action1: A1(Date)

Q2: Of these games, which had an attendance over 90,000?

SQL2: SELECT Date WHERE Attendance >= 90000.0

Action2: A7 A2(Attendance) A3(>=) A4(90000.0)

Q3: What were the exact attendance numbers for those games?

SQL3: SELECT Attendance WHERE Attendance >= 90000.0

Action3: A1(Attendance) A6

Q4: Which was the best attendance on the chart?

SQL4: SELECT Attendance WHERE Attendance is Max

Action4: A1(Attendance) A2(Attendance) A3(Max)

Date Time TV Attendance

1-Sep 2:30 PM BTN 14

8-Sep 3:00 PM FX 24

… … … …

24-Nov 2:30 PM ESPN 2 201

1-Dec 7:00 PM FOX 204

1-Jan 4:10 PM ESPN 204

Figure 5: Outputs of a sequence of four sentences which are
correctly produced by our approach.

Adding table knowledge improves overall accuracy and se-
quence accuracy. Adding contextual knowledge further im-
prove the sequence accuracy. Figure 5 shows the outputs of a
sequence of four sentences which are correctly produced by
our approach. We can see our model has the ability of effec-
tively replicating previous logical form segment to derive the
meaning representation of a context-dependent utterance.

We study the performance of each module of CAMP.
From Table 5 we can see that table knowledge and contex-
tual knowledge both bring improvements in these modules.
The controller module and the column prediction module in
SELECT expression achieves higher accuracies. The reason
is that, compared to other modules, the supervise signals for
these two modules are less influenced by spurious logical
forms.

We conduct error analysis to understand the limitation of
our approach and shed light on future directions. The er-
rors are mainly caused by error propagation and semantic
matching problems and limitation of our grammar. Three ex-
amples are given in Figure 6. In the top example the action
sequence of question 2 is correctly predicted. However the
replicated WHERE clause form the previous logical form



Q1: What was the most number of episodes tamera was in?

SQL1: SELECT Notes WHERE Title is Min

Action1: A1(Notes) A2(Title) A3(Min) A4(None)

Q2: What was that show called?

SQL2: SELECT Title WHERE Title is Min

Action2: A1(Title) A6

Q1: What are all the countries?

SQL1: SELECT Nation

Action1: A1(Nation)

Q2: Of these countries, which ones won gold medals?

SQL2: SELECT Nation WHERE Gold !=1

Action2: A7 A2(Nation) A3(!=) A4(1)

Q1: Which all the titles?

SQL1: SELECT Title

Action1: A1(Title)

Q2: Which of these competitions have rugby in the title?

SQL2: COPY ENTIRE WHERE Competition = Super Rugby

Action2: A7 A2(Competition) A3(=) A4(Super Rugby)

Figure 6: Wrongly predicated outputs by our model. Top:
error progation; Middle: SQL2 is wrong due to semantic
matching error; Bottom: not coverd by current grammar.

is incorrect. In the middle example, “won gold medals” in
the question should be interpreted as “Gold > 0”. However
the term ’“ones” misleads the model to predict the WHERE
value as “1”. The bottom example is unanswerable by our
current model because our grammar as described in Table 1.
do not cover the “contains in” operator.

Related Work
This work closely relates to two lines of work, namely
table-based semantic parsing and context-dependent seman-
tic parsing. We describe the connections and the differences
in this section.

Table-based semantic parsing aims to map an utterance
to an executable logical form, which can be considered a
program to execute on a table to yield the answer (Pasupat
and Liang 2015; Krishnamurthy, Dasigi, and Gardner 2017;
Liang et al. 2018). The majority of existing studies focus
on single-turn semantic parsing, in which case the mean-
ing of the input utterance is independent of the historical
interactions. Existing studies on single-turn semantic pars-
ing can be categorized based on the type of supervision
used for model training. The first category is the supervised
setting, in which case the target logical forms are explic-
itly provided. Supervised learning models including vari-
ous sequence-to-sequence model architectures and slot fill-
ing based models have proven effective in learning the pat-
terns involved in this type of parallel training data. The sec-
ond category is weak supervised learning, in which case
the model can only access answers/denotations but does not
have the annotated logical forms. In this scenario, logical
forms are typically regarded as the hidden variables/states.
Maximum marginal likelihood and reinforcement learning
have proven effective in training the model (Guu et al. 2017).
Semi supervised learning is also investigated to further con-
sider external unlabeled text corpora (Yin et al. 2018). Dif-

ferent from the aforementioned studies, our work belongs to
multi-turn table-based semantic parsing. The meaning of a
question also depends on the conversation history. The most
relevant work is Iyyer, Yih, and Chang (2017), the authors
of which also develop the SequentialQA dataset. We have
described the differences between our work and the work of
Iyyer, Yih, and Chang (2017) in the introduction section.

In context-dependent semantic parsing, the understand-
ing of an utterance also depends on some contexts. We di-
vide existing works based on the different types of “con-
text”, including the historical utterances and the state of
the world which is the environment to execute the logical
form on. Our work belongs to the first group, namely his-
torical questions as the context. In this field, Zettlemoyer
and Collins (2009) learn the semantic parser from annotated
lambda-calculus for ATIS flight planning interactions. They
first carry out context-independent parsing with Combina-
tory Categorial Grammar (CCG), and then resolve all ref-
erences and optionally perform an elaboration or deletion.
Vlachos and Clark (2014) deal with an interactive tourist in-
formation system, and use a set of classification modules
to predict different arguments. Suhr, Iyer, and Artzi (2018)
also study on ATIS flight planning datasets, and introduce
an improved sequence-to-sequence learning model to selec-
tively replicate previous logical form segments. In the sec-
ond group, the world is regarded as the context and the
state of the world is changeable as actions/logical forms
are executed on the world. Artzi and Zettlemoyer (2013)
focus on spatial instructions in the navigation environment
and train a weighted CCG semantic parser. Long, Pasupat,
and Liang (2016) build three datasets including ALCHEMY,
TANGRAMS and SCENE domains. They take the starting
state and the goal state of the entire instructions, and develop
a shift-reduce parser based on a defined grammar for each
domain. Suhr and Artzi (2018) further introduce a learning
algorithm to maximize the immediate expected rewards for
all possible actions of each visited state.

Conclusion
In this work, we present a conversational table-based se-
mantic parser called CAMP that integrates various types of
knowledge. Our approach integrates various types of knowl-
edge, including unlabeled question utterances, typing infor-
mation from external resource, and an improved grammar
which is capable of replicating previously predicted action
subsequence. Each module in the entire pipeline can be
conventionally improved. We conduct experiments on the
SequentialQA dataset, and train the model from question-
denotation pairs. Results show that incorporating knowledge
improves the accuracy of our model, which achieves state-
of-the-art accuracy on this dataset. Further analysis shows
that our approach has the ability to discovery and utilize pre-
viously generated logical forms to understand the meaning
of the current utterance.
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