Skip to main content

Unsupervised Ensemble Strategy for Retinal Vessel Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11764))

Abstract

Retinal vessel segmentation is a fundamental step in diagnosis for retinal image analysis. Though many segmentation methods are proposed, little research considers how to ensemble their results to fully exploit the advantages of each method. In this work, we propose a novel unsupervised ensemble strategy to automatically combine multiple segmentation results for an accurate result. There is a no-reference network that could assess the vessel segmentation quality without knowing the ground truth. We then optimize the weight of individual result to maximize this segmentation quality score to enhance the final result. Through extensive experiments, our method has shown superior performance over the state-of-the-art on the DRIVE, STARE, CHASE_DB1 datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955 (2018)

  2. ChenCong, X.: Retina-vesselnet: a denseblock-unet for retinal blood vessel segmentation. https://github.com/DeepTrial/Retina-VesselNet. Accessed 3 Mar 2019

  3. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  4. Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  5. Galdran, A., Costa, P., Bria, A., Araújo, T., Mendonça, A.M., Campilho, A.: A no-reference quality metric for retinal vessel tree segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 82–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_10

    Chapter  Google Scholar 

  6. Gu, L., Cheng, L.: Learning to boost filamentary structure segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 639–647 (2015)

    Google Scholar 

  7. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. In: Proceedings of the AMIA Symposium, p. 931. American Medical Informatics Association (1998)

    Google Scholar 

  8. Kaggle: diabetic retinopathy detection. https://www.kaggle.com/c/diabetic-retinopathy-detection. Accessed 3 Mar 2019

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Laibacher, T., Weyde, T., Jalali, S.: M2u-net: effective and efficient retinal vessel segmentation for resource-constrained environments. arXiv preprint arXiv:1811.07738 (2018)

  11. Leopold, H.A., Orchard, J., Zelek, J.S., Lakshminarayanan, V.: Pixelbnn: augmenting the pixelcnn with batch normalization and the presentation of a fast architecture for retinal vessel segmentation. J. Imaging 5(2), 26 (2019)

    Article  Google Scholar 

  12. Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., Wang, T.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2016)

    Article  Google Scholar 

  13. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  14. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_17

    Chapter  Google Scholar 

  15. Mo, J., Zhang, L.: Multi-level deep supervised networks for retinal vessel segmentation. Int. J. Comput. Assist. Radiol. Surg. 12(12), 2181–2193 (2017)

    Article  Google Scholar 

  16. Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit. 46(3), 703–715 (2013)

    Article  Google Scholar 

  17. Niu, Y., et al.: Pathological evidence exploration in deep retinal image diagnosis. arXiv preprint arXiv:1812.02640 (2018)

  18. Orlando, J.I., Blaschko, M.: Learning fully-connected CRFs for blood vessel segmentation in retinal images. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 634–641. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_79

    Chapter  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  21. Tetteh, G., Rempfler, M., Zimmer, C., Menze, B.H.: Deep-FExt: deep feature extraction for vessel segmentation and centerline prediction. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 344–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_40

    Chapter  Google Scholar 

  22. Wu, Y., Xia, Y., Song, Y., Zhang, Y., Cai, W.: Multiscale network followed network model for retinal vessel segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 119–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_14

    Chapter  Google Scholar 

  23. Zhuang, J.: Laddernet: multi-path networks based on U-Net for medical image segmentation. arXiv preprint arXiv:1810.07810 (2018)

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 61602020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, B., Gu, L., Lu, F. (2019). Unsupervised Ensemble Strategy for Retinal Vessel Segmentation. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics