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Abstract

A major goal of analyzing retinal optical coherence tomography (OCT) images is retinal layer 

segmentation. Accurate automated algorithms for segmenting smooth continuous layer surfaces, 

with correct hierarchy (topology) are desired for monitoring disease progression. State-of-the-art 

methods use a trained classifier to label each pixel into background, layer, or surface pixels. The 

final step of extracting the desired smooth surfaces with correct topology are mostly performed by 

graph methods (e.g. shortest path, graph cut). However, manually building a graph with varying 

constraints by retinal region and pathology and solving the minimization with specialized 

algorithms will degrade the flexibility and time efficiency of the whole framework. In this paper, 

we directly model the distribution of surface positions using a deep network with a fully 

differentiable soft argmax to obtain smooth, continuous surfaces in a single feed forward 

operation. A special topology module is used in the deep network both in the training and testing 

stages to guarantee the surface topology. An extra deep network output branch is also used for 

predicting lesion and layers in a pixel-wise labeling scheme. The proposed method was evaluated 

on two publicly available data sets of healthy controls, subjects with multiple sclerosis, and 

diabetic macular edema; it achieves state-of-the art sub-pixel results.
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1 Introduction

Optical coherence tomography (OCT), which uses light waves to rapidly obtain 3D retina 

images, is widely used in the clinic. Retinal layer thicknesses change with certain diseases 

[15] and the analysis of OCT images improves disease monitoring. Manually segmenting the 

images and measuring the thickness is time consuming, and fast automated retinal layer 

segmentation tools are routinely used for this purpose.

The goal of layer segmentation is to obtain smooth, continuous retina layer surfaces with the 

correct anatomical ordering; these results can then be used for thickness analysis or 

registration [14]. State-of-the-art methods use a trained classifier (e.g, random forest (RF) 

[13] or deep network [5]) for coarse pixel-wise labeling and then level set [2] or graph 

methods [3,5,6,13] for surface estimation. Deep networks, which can learn features 

automatically, have been used in retina layer segmentation. ReLayNet [18] uses a fully 

convolutional network (FCN) to segment eight layers and edema by classify each pixel into 

layer or background classes. The main problem with this pixel-wise labeling scheme is that 

the layer topology is not guaranteed and final continuous and smooth surfaces are not always 

obtained. Ben-Cohen et al. [1] extract the boundaries from the layer maps using a Sobel 

filter and then use a shortest path algorithm to extract the surfaces. Other work focuses on 

classifying the pixels into surface pixels or background. Fang et al. [5] use a convolutional 

neural network (CNN) and Kugelman et al. [12] use a recurrent neural network (RNN) to 

classify the center pixel of a patch into boundary pixel or background; then a graph method 

is used to extract the final surfaces. In order to build a topologically correct graph [6,13], 

surface distances and smoothness constraints, which are spatially varying, must be 

experimentally assigned and an energy minimization must be solved outside the deep 

learning framework. A simpler shortest path graph method [3] was used by [5,12]; however, 

the shortest path extracts each surface separately, thus the hierarchy is not guaranteed 

compared to [6,13], especially at the fovea where surface distances can be zero.

The aforementioned graph method cannot be integrated into a deep network, and it needs 

special parameter settings, which make the method harder to optimize. He et al. [7,9] use a 

second network to replace the graph method to obtain the smooth, topology-guaranteed 

surfaces, but this requires much more computation.

In this paper, we propose a new method for obtaining smooth, continuous layer surfaces with 

the correct topology in an end-to-end deep learning scheme. We use a fully convolutional 

network to model the position distribution of the surfaces and use a soft-argmax method to 

infer the final surface positions. The proposed fully convolutional regression method can 

obtain sub-pixel surface positions in a single feed forward propagation without any fully-

connected layer (thus requiring many fewer parameters). Our network has the benefit of 

being trained end-to-end, with improved accuracy against the state-of-the-art, and it is also 

light-weight because it does not use a fully-connected layer for regression.
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2 Method

Our framework is shown in Fig. 1, we provide a description below for each step. The 

network has two output branches: the first branch outputs a pixel-wise labeling segmentation 

of layers and lesions and the second branch models the distribution of surface positions and 

outputs the positions of each surface at each column. These two branches share the same 

feature extractor, a residual U-Net [17]. The input to the network is a three-channel image. 

One channel is the original flattened OCT image [13], and the other two images are the 

spatial x and y positions (normalized to the interval [0,1]) of each pixel to provide additional 

spatial information.

Preprocessing.

To reduce memory usage, we flatten a retinal B-scan image to the estimated Bruch’s 

membrane (BM) using an intensity gradient method [13] and crop the retina out.

Surface Position Modeling.

Given an image I and a ground truth surface represented by row indexes x1
g, …, xN

g  across N 

columns (correspondingly N A-scans), a conventional pixel-wise labeling scheme builds a 

surface probability map H, where H(x j
g, j) = 1( j = 1, …, N) and zero else where. A U-Net [17] 

takes I as input and learns to generate H. Ideally, the surface should be continuous across the 

image and intersect each column only once. However, the generated probability map may 

produce zero or multiple positions with high prediction probability in a single column, thus 

breaking the continuity. Extreme class imbalance between the one-pixel-wide boundary and 

non-boundary pixels may also cause problems.

In contrast to the pixel-wise labeling scheme, we want to model the surface position 

distribution p = p x1, ⋯, xN, I  by approximating it with q = ∏i = 1
N qi xi | I; θ p(I). For an input 

image I, the network generates N independent surface position distributions 

qi xi | I; θ , i = 1, ⋯, N at each column. θ are the network parameters to be trained by 

minimizing the K-L divergence between the data distribution p and q. This idea has 

similarities with Variational Bayesian methods. The direct inference of each xi from the joint 

distribution p is hard but it is easier given the simpler independent qi’s. To train the network 

by minimizing the K-L divergence using the input image I and ground truth xi
g’s, we have

argmin
θ

KL(p‖q) = argmin
θ

∫
x

∫
, I

p x1, ⋯, xN, I log
p x1, ⋯, xN, I

∏i = 1
N qi xi | I; θ p(I)

, (1)

= − argmin
θ

∫
x

∫
, I

p x1, ⋯, xN, I ∑
i = 1

N
log qi xi | I, θ , (2)
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= − argmin
θ

E
x , I p

∑
i = 1

N
logqi xi | I, θ . (3)

The x  is a vector of surface positions at N columns and is sampled from data distribution p. 

In a stochastic gradient descent training scheme, the expectation in Eq. (3) can be removed 

with a training sample I, xi
g, ⋯, xN

g  and the position xi
g of the ith column is on the image grid 

which can only be an integer from 1 to the image row number R. So the loss becomes,

ℒCE = − ∑
i = 1

N
∑
j = 1

R
𝟙 xi

g = j logqi xi
g | I, θ . (4)

𝟙 xi
g = j  is the indicator function where 𝟙(xi

g = j) = 1 if xi
g = j and zero elsewhere. Equation 

(4) is the cross entropy loss for a single surface. In multiple surfaces segmentation, we use 

the network to output M feature maps (each map has the same size as the input image) for M 

surfaces. A column-wise softmax is performed independently on these M feature maps to 

generate surface position probabilities qi xi | I; θ , i = 1, …, N for each column and each 

surface. An intuitive explanation of the proposed formulation is: instead of classifying each 

pixel into surfaces or backgrounds, we are selecting a row index at each column for each 

surface.

Soft-argmax.

The deep network outputs marginal conditional distributions qi xi | i, θ  for each column i, so 

the exact inference of the boundary position at column i from qi can be performed 

independently. The differentiable soft-argmax operation (5) used in keypoint localization 

[10] is used to estimate the final surface position xi
sa at each column i. Thus, we directly 

obtain the surface positions from the network with soft-argmax,

xi
sa = ∑

r = 1

R
rqi(r | I, θ)) . (5)

We further regularize qi by directly encouraging the soft-argmax of qi to be the ground truth, 

xi
g, with a smooth L1 loss,

ℒL1 = ∑
i = 1

N
0.5di

2𝟙 |di| < 1 + |di| − 0.5 𝟙 |di| ≥ 1 , di = xi
sa − xi

g . (6)

Topology Guarantee Module.

The layer boundaries within the retina have a strict anatomical ordering. For M surfaces 

s1,...,sM from inner to outer retina, the anatomy requires s1(i) ≤ s2(i)⋯ ≤ sM(i), i = 1, …, N
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where sj(i) is the position of the jth surface at the ith column. The soft-argmax operation 

produces exact surfaces s1,...,sM but may not satisfy the ordering constraint. We update each 

s j(i) as s j(i)
new = s j − 1(i) + ReLU s j(i) − s j − 1(i)  iteratively to guarantee the ordering. We 

implement this as the deep network output layer to guarantee the topology both in the 

training and testing stages.

Layer and Lesion Pixel-Wise Labeling.

Our multi-task network has two output branches. The first branch described above outputs 

the correctly ordered surfaces whereas the second branch outputs pixel-wise labelings for 

both layers and lesions. A combined Dice and cross entropy loss [18] is used for the output 

of this branch. C is the total number of classes, gc(x) and pc(x) are the ground truth and 

predicted probability that pixel x belongs to class c, and Ωc is the number of pixels in class c 
and our combined loss is,

ℒDice+CE = ∑
c = 1

C
∑

x ∈ Ωc

wc(x)gc(x)log pc(x) − 1
C ∑

c = 1

C ϵ + ∑x ∈ Ωi
2gc(x)pc(x)

ϵ + ∑x ∈ Ωc
gc(x)2 + pc(x)2

.

Here, ϵ = 001 is a smoothing constant and wc(x) is a weighting function for each pixel [18]. 

The final network training loss is ℒ = ℒDice+CE + ℒCE + ℒL1 .

3 Experiments

The proposed method was validated on two publicly available data sets. The first data set [8] 

contains 35 (14 healthy controls (HC) and 21 subjects with multiple sclerosis (MS)) macula 

Spectralis OCT scans, of which nine surfaces are manually delineated. Each scan has 49 B-

scans of size 496 × 1024. We train on the last 6 HC and last 9 MS subjects and test on the 

other 20 subjects. The second data set [4] contains 110 B-scans (496 × 768) from 10 diabetic 

macular edema patients (each with 11 Bscans). Eight retina surfaces and macular edema 

have been manually delineated. We train on the last 55 B-scans and test on the challenging 

first 55 B-scans with large lesions. The network is implemented with Pytorch and trained 

with an Adam optimizer with an initial learning rate of 10−4, weight decay of 10−4, and a 

minibatch size of 2 until convergence. The training image is augmented with horizontal 

flipping and vertical scaling both with probability 0.5.

HC and MS Data Set.

We compare our proposed method with several baselines. The AURA tool [13] is a graph 

based method and it is the state-of-the-art compared to other publicly available tools as 

shown in [19]. The RNet [9] is a regression deep network that can obtain smooth surfaces 

from layer segmentation maps. ReLayNet [18] is a variation of U-Net and only outputs layer 

maps; we obtain the final surface positions by summing up the output layer maps in each 

column. The shortest path (SP) algorithm [3,5,12] is also compared. We extract the final 

surfaces using SP on our predicted qi’s (the surface map as shown in Fig. 1). All the baseline 
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methods are retrained on the same data as our proposed method. The mean absolute 

distances (MADs) for each method are shown in Table 1 (Fig. 2).

DME Data Set.

We compare our results with three graph based methods (for final surface extraction): Chiu 

et al. [4], Rathke et al. [16], and Karri et al. [11]. Since ReLayNet layer surfaces cannot be 

obtained by simply summing up layer maps (due to lesions), we compare the lesion Dice 

scores with it. We ignore the positions where Chiu et al. [4]’s result or manual delineation 

are NaN. The boundary MAD is shown in Table 2. Our network has an extra branch for 

lesion prediction; however, Rathke’s and Karri’s method can only output layer surfaces. The 

Dice score of diabetic macular edema for Chiu’s method [4], ReLayNet [18] and ours are 

0.56, 0.7, 0.7 respectively. Qualitative results are shown in Fig. 3.

4 Discussion and Conclusion

In this paper, we proposed a new way for retina OCT layer surface and lesion segmentation 

without using handcrafted graph based methods. The direct modeling of surface position and 

the fully differentiable soft-argmax operation generates sub-pixel surface positions in a 

single feed forward propagation. The generated sub-pixel accuracy surface is smooth and 

continuous and guarantees correct layer ordering, thus overcoming conventional pixel-wise 

labeling problems. The topology module affects the network training and thus is not simply 

a post-processing step. Currently the algorithm works on each B-scan individually, and 

future work will consider context among different B-scans.
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Fig. 1. 
A schematic of the proposed method (top) and network structure (bottom).
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Fig. 2. 
Visualization of shortest path (top), our result (middle), and manual segmentation (bottom) 

from a healthy subject.
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Fig. 3. 
Visualization of original image (left), our results (middle), manual segmentation (right) of 

four B-scans from diabetic macular edema subjects.
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Table 1.

Mean absolute distance (MAD) and standard deviation (Std. Dev.) in μm evaluated on 20 manually delineated 

scans of 9 surfaces, comparing AURA toolkit [13], R-Net [9], ReLayNet [18], SP (shortest path on our surface 

map), and our proposed method. Depth resolution is 3.9 μm. Numbers in bold are the best in that row.

Boundary MAD (Sth. Dev.)

AURA R-Net ReLayNet SP Our’s

ILM 2.37 (0.36) 2.38 (0.36) 3.17 (0.61) 2.70 (0.39) 2.41 (0.40)

RNFL-GCL 3.09 (0.64) 3.10 (0.55) 3.75 (0.84) 3.38 (0.68) 2.96 (0.71)

IPL-INL 3.43 (0.53) 2.89 (0.42) 3.42 (0.45) 3.11 (0.34) 2.87 (0.46)

INL-OPL 3.25 (0.48) 3.15 (0.56) 3.65 (0.34) 3.58 (0.32) 3.19 (0.53)

OPL-ONL 2.96 (0.55) 2.76 (0.59) 3.28 (0.63) 3.07 (0.53) 2.72 (0.61)

ELM 2.69 (0.44) 2.65 (0.66) 3.04 (0.43) 2.86 (0.41) 2.65 (0.73)

IS-OS 2.07 (0.81) 2.10 (0.75) 2.73 (0.45) 2.45 (0.31) 2.01 (0.57)

OS-RPE 3.77 (0.94) 3.81 (1.17) 4.22 (1.48) 4.10 (1.42) 3.55 (1.02)

BM 2.89 (2.18) 3.71 (2.27) 3.09 (1.35) 3.23 (1.36) 3.10 (2.02)

Overall 2.95 (1.04) 2.95 (1.10) 3.37 (0.92) 3.16 (0.88) 2.83 (0.99)
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Table 2.

Mean absolute distance (MAD) in μm for eight surfaces (and the mean of those eight surfaces) evaluated on 55 

manually delineated scans comparing Chiu et al. [4], Karri et al. [11], Rathke et al. [16], and our proposed 

method. Numbers in bold are the best in that column.

Mean #1 #2 #3 #4 #5 #6 #7 #8

Chiu 7.82 6.59 8.38 9.04 11.02 11.01 4.84 5.74 5.91

Karri 9.54 4.47 11.77 11.12 17.54 16.74 4.99 5.35 4.30

Rathke 7.71 4.66 6.78 8.87 11.02 13.60 4.61 7.06 5.11

Ours 6.70 4.51 6.71 8.29 10.71 9.88 4.41 4.52 4.61
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