Skip to main content

Biomarker Localization by Combining CNN Classifier and Generative Adversarial Network

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

This paper proposes a novel deep neural network architecture to effectively localize potential biomarkers in medical images, when only the image-level labels are available during model training. The proposed architecture combines a CNN classifier and a generative adversarial network (GAN) in a novel way, such that the CNN classifier and the discriminator in the GAN can effectively help the encoder-decoder in the GAN to remove biomarkers. Biomarkers in abnormal images can then be easily localized and segmented by subtracting the output of the encoder-decoder from its original input. The proposed approach was evaluated on diabetic retinopathy images with real biomarkers and on skin images with simulated biomarkers, showing state-of-the-art performance in localizing biomarkers even if biomarkers are irregularly scattered and are of various sizes in images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/c/diabetic-retinopathy-detection/data.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  2. Codella, N.C., Gutman, D., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: ISBI (2018)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  5. Kandemir, M., Zhang, C., Hamprecht, F.A.: Empowering multiple instance histopathology cancer diagnosis by cell graphs. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 228–235. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_29

    Chapter  Google Scholar 

  6. Manivannan, S., Cobb, C., Burgess, S., Trucco, E.: Subcategory classifiers for multiple-instance learning and its application to retinal nerve fiber layer visibility classification. IEEE TMI 36(5), 1140–1150 (2017)

    Google Scholar 

  7. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: NIPS (1998)

    Google Scholar 

  8. Rajpurkar, P., Irvin, J., Zhu, K., et al.: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV (2017)

    Google Scholar 

  11. Yang, C., Rangarajan, A., Ranka, S.: Visual explanations from deep 3D convolutional neural networks for Alzheimer’s disease classification. arXiv preprint arXiv:1803.02544 (2018)

  12. Zhang, Z., Xie, Y., Xing, F., McGough, M., Yang, L.: MDNet: a semantically and visually interpretable medical image diagnosis network. In: CVPR (2017)

    Google Scholar 

  13. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

  14. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. arXiv preprint arXiv:1702.04595 (2017)

Download references

Acknowledgement

This work is supported in part by the National Key Research and Development Program (grant No. 2018YFC1315402, No. 2018YFC0116500), the Guangdong Key Research and Development Program (grant No. 2019B020228001), and the National Natural Science Foundation of China (grant No. 81770967, No. 91846109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixuan Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 164 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, R. et al. (2019). Biomarker Localization by Combining CNN Classifier and Generative Adversarial Network. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics