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Abstract. Probabilistic atlases (PAs) have long been used in standard
segmentation approaches and, more recently, in conjunction with Convol-
utional Neural Networks (CNNs). However, their use has been restricted
to relatively standardized structures such as the brain or heart which
have limited or predictable range of deformations. Here we propose an
encoding-decoding CNN architecture that can exploit rough atlases that
encode only the topology of the target structures that can appear in any
pose and have arbitrarily complex shapes to improve the segmentation
results. It relies on the output of the encoder to compute both the pose
parameters used to deform the atlas and the segmentation mask itself,
which makes it effective and end-to-end trainable.

1 Introduction

Probabilistic atlases (PAs) are widely used for multi-atlas based segmentation|g].
With the advent of deep learning, there has been a push to incorporate them
with Convolutional Neural Networks (CNNs) as well [TJ7JT4IT5]. The published
techniques relying on deep learning share a number of features: They work best
for structures featuring relatively small variations in shape and position; the
atlases are often created by fusing multiple manually annotated images; the
atlases must also be pre-registered to the target images to align them with the
structures of interest.

Thus, the PAs have been mostly used to segment structures such as the
brain or heart for which the above requirements can be met. In this paper,
we propose an approach to design and handle PAs that makes them usable in
complex situations where the shape and position can vary dramatically, such
as those shown in Fig. Our PAs are coarse and only encode the relative
position and topology of the structures we expect to find. To register them, we
rely on affine transforms whose parameters are estimated at the same time as
the segmentations themselves using the end-to-end trainable encoder-decoder
architecture depicted by Fig. [2| which we will refer to as PA-Net. The affine
transforms are used to warp the atlases and feed the features of the warped
atlases to the decoder. This differs significantly from earlier approaches [14J15]
that rely on pre-registered atlases.
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Fig. 1. Eliminating topological mistakes. (a) A small FIBSEM image stack featuring
a synaptic junction and a retinal fundus image. (b) Ground-truth segmentations. The
pre-synaptic, synaptic-cleft, and post-synaptic regions shown in green, red, and blue
respectively. Similarly, the optic disk and cup shown in green and red, respectively.
(c) U-Net segmentations with orange arrows pointing to topological mistakes. (d) Our
error-free result (best viewed in color).

We validate our approach on segmentation of synaptic junctions in Electron
Microscopy (EM) images and optic nerve head segmentation in retinal fundus
images. A synaptic junction has an arbitrary shape but always features a synap-
tic cleft sandwiched between a pre-synaptic bouton belonging to the axon of one
neuron and a post-synaptic dendritic spine belonging to another. In this case,
the shape complexity and unpredictability precludes the use of standard PAs.
Optic nerve head consists of an optic disk and optic cup. Even though their
shape does not vary significantly, there are significant variations in the size of
the optic cup and the position of the optic nerve head.

We will show that PA-Net eliminates most of the topological mistakes its
unaided V-Net [II] or U-Net [I3] backbone makes on the EM and retinal images,
while being generic and potentially applicable to other segmentation tasks. Our
contribution is therefore a novel approach that makes it possible to use probabili-
-stic atlases even in situations where shape variability is too great for existing
approaches and methods to integrate the atlas registration process directly into
the network. The code is publicly availabld’]

2 Related Work

PAs are commonly used in standard atlas-based segmentation approaches. In
their piplines, CNNs are indirectly used to perform segmentation. These include
using a CNN to infer deformation maps to register target images to atlas images
[2] and using it to implicitly infer the segmentation masks[4l6]; using CNNs to

3 lhttps://github.com/cvlab-epfl /PA-net.git
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Fig. 2. PA-Net architecture. The network takes as input an image and a list of PAs.
Given the decoder output, the fully connected layers estimate the parameters of the
affine transformation that registers the PAs to the input. The registered PAs are then
concatenated with the features computed by the convolutional decoder at each scale.

improve the selection of best atlases from a library [10]. As this is not the focus
of this paper, we will not discuss them further and will concentrate on methods
that directly use the PAs to assist a CNN that perform segmentation.

A PA can provide localization priors to help a network find the target of
interest. Such PAs are often referred to as seed layers. They come in two flavors,
Gaussian priors [3[16] or binary seed layers [9]. Another popular way to focus the
attention of the network is to provide an attention mask [5], which then serves
the same purpose as a PA. However, the attention masks are derived from the
input data itself and does not act as an external knowledge source.

PAs built by fusing multiple manually annotated images can be used to
introduce even more prior knowledge about shape and topology of structures.
In [I4J15], this is done to improve segmentations of human brain by having
the CNN take pre-registered PAs as input. In our work, we extend the idea by
demonstrating that PAs can be used to introduce topological knowledge even
when the structure of interest exhibits large shape variations and without pre-
registration that the whole system is end-to-end trainable.

3 Approach

3.1 Network Architecture

The architecture of the proposed PA-Net is depicted in Fig. 2] Its backbone is
an encoder-decoder architecture similar to the one used in popular networks such
as U-Net [I3] or V-Net [L1]. These networks are designed to learn to approximate
the distribution p(Y|X), where X is the input image and Y is the output segmen-
tation. We extend the idea by learning the joint distribution p(Y,Tq(A)|X, A).
The function 74(-) applies affine transformations to the set of PAs A given the
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pose vectors q. We factorize this joint distribution as
(Y, Tq(A) X, A) = p(Y|X, T4(A))p(aX, A) 1)

PA-Net models it using a primary stream, the encoder-decoder backbone at the
top of Fig.[2] and a secondary stream, the fully connected layers at the bottom of
Fig.[2l The secondary stream F (-, 6) originates from the latent vector produced
by the final stage of the encoder £(-,0.), estimates the affine parameter vector
g, uses it to warp the atlases, and feed them to the various layers of the decoder
D(-;04) after rescaling them to the resolution of feature vectors at each stage.
Here 6.,0, and 8¢ are the learned weights that control the behavior of £, D and
F. Given the encoder output, F and D model p(Y|X,T4(A)) and p(q|X, A),
respectively. This guarantees that these two distributions are learned from the
same features. Training the encoder to produce features that are effective for
both tasks yield improved performance.

3.2 Atlas Design

Fig |3l depicts the topological atlases we use to segment synaptic junctions and
optic disks and cups. In the first case, they are cubes and in the second, ordinary
2D arrays. They encode the probability of any pixel of voxel to belong to one of
the possible classes—pre-synaptic, cleft, or post-synaptic for synapses and optic
disk or cup for retinas—given its pose.

] . ’

(a) (b)

Fig. 3. Probabilistic atlases. (a) For synaptic junction segmentation, they are cubes
and we show a single face. (b) For optic optic disk and cup segmentation, they are
regular 2D arrays. The color hues denote the same areas as those in Fig. [1l The color
saturation is proportional to the probability at a given location (best viewed in color).

3.3 Atlas Registration

Parameters necessary for PA registration is computed by estimating the pose
vector q. When working with image cubes such as the one shown at the top of
Fig. |1} we take the pose vector to be q = [tz,1ty,t5, Sz, Sy, Sz, Tx, 'y, 2], Where
l{z,y,-) represent translations and sy, , .y scalings in the z,y, and 2z directions,
respectively. We represent the orientation using the angle-axis vector [rg, ry, 2],
whose direction is the axis of rotation. When working with 2D images, we drop
t,, s,, and r, from q.
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Table 1. Comparative results for synaptic junction segmentation.

Jaccard index (%) TER

Pre-synaptic|Synaptic junction|Post-synaptic|Mean
V-Net 63.0 56.0 80.6 66.5 |5/15
PA-VNet 59.5 57.8 83.1 66.81/15
U-Net 73.6 59.7 79.1 70.7 | 7/15
Naive PA-UNet 73.4 58.0 78.4 69.9 | 7/15
PA-UNet 72.6 62.8 87.0 74.1|3/15

3.4 Loss Functions

Following standard practice, we formulate the loss terms as the negative log
likelihood of the joint distribution p(Y,T4(A)|X,.A) of Eq. [I] This yields the
composite loss

L= »Cseg + »Cpose . (2)

Lseq is the standard cross entropy loss that evaluates segmentation performance
and take L,,sc is the least square error in estimating the pose q.

4 Results and Discussion

4.1 Datasets

Synaptic Junction Dataset: It is a 500 x 500 x 200 FIB-SEM image stack
of a mouse cortex. We used 50 xy slices for training, 50 for validation, and 100
for testing. From each set, we cropped 96 x 96 x 96 image volumes containing
a synaptic junction such as the one shown in the top row of Fig. a) and they
are zero-padded as necessary. This gave us 13, 10 and 15 volumes for training,
validation and testing, respectively. The synapse is not necessarily perfectly cen-
tered and the task is to segment pre-synaptic region, post-synaptic region, and
synaptic cleft.

Retinal Fundus Image Dataset: It comprises 400 2124 x 2056 retinal fundus
images acquired using a Zeiss Visucam 500 camera [12], which we resize and pad
to be 512 x 512. We use 100 for training, 100 for validation, and 200 for testing.

4.2 Quantitative and Qualitative Results

We evaluate segmentation performance in terms of the standard Jaccard In-
dex and of an additional metric we dub the Topological Error Ratio(TER). We
define TER as the ratio of segmentations containing topological errors to the
total number of test images. A segmentation is considered to contain a topolog-
ical error if it violates the expected topology of the target structure, that is, it
features semantic labels appearing where they should not given the topological
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Table 2. Comparative results for fetinal fundus image segmentation.

Jaccard index (%)

Optic disk|Optic cup|Mean TER
V-Net 78.4 72.5 75.5 | 7/200
PA-VNet 79.0 73.0 76.0| 3/200
U-Net 81.3 73.8 77.6 |18/200
Naive PA-UNet| 80.8 74.1 77.3 [16/200
PA-UNet 81.6 74.6 78.1|5/200

constraints. We compute this value by finding the connected components of the
final segmentation and then finding instances that violate the topology.

We tested two versions of PA-Net, one based on the U-Net [I3] architecture
and the other based on the more recent V-Net [II]. We compare the results
against those of the standard U-Net and V-Net. We report our comparative
results on our two datasets in Tables[[]and [2] Figs. [] depict them qualitatively
(see supplementary materials for further results). Using the atlas consistently
improves over baseline performance. The gains are most visible in TER terms
because our PA-Nets truly come into their own when the standard U-Net and V-
Net fail, which is only a fraction of the time, as would be expected of architectures
that are as popular as they are. Even when it fails to eliminate topological errors,
it reduces the size of the errors as shown in the second row of Fig. 4)). The one
exception is the pre-synaptic region, for which the Jaccard numbers decrease.
A closer inspection of the results show that the atlas sometimes encourages the
segmentation to leak from weak boundary regions in few instances. We plan to
address this issue by introducing an additional stream that specifically focus on
predicting object boundaries and combining its results with PA-Net.

To demonstrate the importance of using the same features to compute the
segmentation and the pose parameters, we implemented a naive version of our
approach that uses two separate streams to compute the pose and the segmentati-
-on features, which we denote as Naive PA-Unet in Tables [I| and [2l The naive
version fails to resolve the topological mistakes in the datasets. In the synaptic
junction dataset, this occurs because the naive version has a mean orientation
estimation error of 80.6° in contrast to the PA-Net’s error of 10.4°. In the
retinal fundus image dataset, the naive version has a mean localization error
of 26.5 pixels compared to a 3.9 pixel error for PA-Net. As a result, in both
instances, network fails to properly register PAs.

5 Conclusion

We have proposed an encoding-decoding architecture that can exploit rough
atlases that encode the topology of structures that can appear in any pose and
have arbitrarily complex shapes to improve the segmentation results. One of its
crucial components is that it relies on the output of the encoder to compute both
the pose parameters used to deform the atlas and the segmentation mask itself,
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Fig. 4. U-Net vs PA-Net. Top three rows depict results from synaptic junction seg-
mentation. The bottom three rows depict results from retinal fundus image segmenta-
tion. (a) Input images, (b) Ground-truth, (c) U-Net results (d) PA-Net results. The
color hues denote the same areas as those in Fig. [1| (best viewed in color).



8

U. Wickramasinghe et al.

which makes it effective and end-to-end trainable. As future work, we plan to
extend PA-Net by introducing an additional stream to produce edge maps and
using it to address the minor loss in accaracy that occur when the structures
have weak boundaries.
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