Skip to main content

Synapse-Aware Skeleton Generation for Neural Circuits

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11764))

Abstract

Reconstructed terabyte and petabyte electron microscopy image volumes contain fully-segmented neurons at resolutions fine enough to identify every synaptic connection. After manual or automatic reconstruction, neuroscientists want to extract wiring diagrams and connectivity information to analyze the data at a higher level. Despite significant advances in image acquisition, neuron segmentation, and synapse detection techniques, the extracted wiring diagrams are still quite coarse, and often do not take into account the wealth of information in the densely reconstructed volumes. We propose a synapse-aware skeleton generation strategy to transform the reconstructed volumes into an information-rich yet abstract format on which neuroscientists can perform biological analysis and run simulations. Our method extends existing topological thinning strategies and guarantees a one-to-one correspondence between skeleton endpoints and synapses while simultaneously generating vital geometric statistics on the neuronal processes. We demonstrate our results on three large-scale connectomic datasets and compare against current state-of-the-art skeletonization algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bertrand, G., Aktouf, Z.: Three-dimensional thinning algorithm using subfields. In: Vision Geometry III, vol. 2356, pp. 113–125. International Society for Optics and Photonics (1995)

    Google Scholar 

  2. Dmitriev, K., Parag, T., Matejek, B., Kaufman, A., Pfister, H.: Efficient correction for EM connectomics with skeletal representation. In: BMVC (2018)

    Google Scholar 

  3. Dorkenwald, S., et al.: Automated synaptic connectivity inference for volume electron microscopy. Nat. Methods 14(4), 435 (2017)

    Article  Google Scholar 

  4. Fornito, A., Zalesky, A., Breakspear, M.: Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013)

    Article  Google Scholar 

  5. Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15(8), 605 (2018)

    Article  Google Scholar 

  6. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford (2004)

    Google Scholar 

  7. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989)

    Article  Google Scholar 

  8. Kornfeld, J., et al.: Em connectomics reveals axonal target variation in a sequence-generating network. Elife 6, e24364 (2017)

    Article  Google Scholar 

  9. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graph. Models Image Process. 56(6), 462–478 (1994)

    Google Scholar 

  10. Malandain, G., Bertrand, G.: Fast characterization of 3D simple points. In: 11th IAPR International Conference on Pattern Recognition, Conference C: Image, Speech and Signal Analysis, Proceedings, vol. III, pp. 232–235. IEEE (1992)

    Google Scholar 

  11. Matejek, B., Haehn, D., Zhu, H., Wei, D., Parag, T., Pfister, H.: Biologically-constrained graphs for global connectomics reconstruction. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  12. Mohammed, H., et al.: Abstractocyte: a visual tool for exploring nanoscale astroglial cells. IEEE Trans. Vis. Comput. Graph. 24(1), 853–861 (2018)

    Article  Google Scholar 

  13. Palágyi, K.: A sequential 3D curve-thinning algorithm based on isthmuses. In: Bebis, G., et al. (eds.) ISVC 2014. LNCS, vol. 8888, pp. 406–415. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14364-4_39

    Chapter  Google Scholar 

  14. Parag, T., Chakraborty, A., Plaza, S., Scheffer, L.: A context-aware delayed agglomeration framework for electron microscopy segmentation. PloS One 10(5), e0125825 (2015)

    Article  Google Scholar 

  15. Reilly, E.P., et al.: Neural reconstruction integrity: a metric for assessing the connectivity accuracy of reconstructed neural networks. Front. Neuroinform. 12, 74 (2018)

    Article  Google Scholar 

  16. Sato, M., Bitter, I., Bender, M.A., Kaufman, A.E., Nakajima, M.: TEASAR: tree-structure extraction algorithm for accurate and robust skeletons. In: Proceedings of the Eighth Pacific Conference on Computer Graphics and Applications, pp. 281–449. IEEE (2000)

    Google Scholar 

  17. Suissa-Peleg, A., et al.: Automatic neural reconstruction from petavoxel of electron microscopy data. Microsc. Microanal. 22(S3), 536–537 (2016)

    Article  Google Scholar 

  18. Takemura, S., et al.: Synaptic circuits and their variations within different columns in the visual system of drosophila. Proc. Natl. Acad. Sci. 112(44), 13711–13716 (2015)

    Article  Google Scholar 

  19. Zhao, T., Olbris, D.J., Yu, Y., Plaza, S.M.: Neutu: software for collaborative, large-scale, segmentation-based connectome reconstruction. Front. Neural Circuits 12 (2018)

    Google Scholar 

Download references

Acknowledgements

H. Pfister is supported in part by NSF grant IIS-1607800. We thank Joergen Kornfeld and Winfried Denk’s group for the J0126 data and synapses, and the Connectomics Group at Google led by Viren Jain for the segmentation. For the JWR dataset, we thank Jeff Lichtman’s group at Harvard University for image acquisition, alignment, and ground truth labeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Matejek .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1305 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matejek, B., Wei, D., Wang, X., Zhao, J., Palágyi, K., Pfister, H. (2019). Synapse-Aware Skeleton Generation for Neural Circuits. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics