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Abstract. Histopathology image analysis can be considered as a Multi-
ple instance learning (MIL) problem, where the whole slide histopathol-
ogy image (WSI) is regarded as a bag of instances (i.e., patches) and the
task is to predict a single class label to the WSI. However, in many real-
life applications such as computational pathology, discovering the key in-
stances that trigger the bag label is of great interest because it provides
reasons for the decision made by the system. In this paper, we propose
a deep convolutional neural network (CNN) model that addresses the
primary task of a bag classification on a histopathology image and also
learns to identify the response of each instance to provide interpretable
results to the final prediction. We incorporate the attention mechanism
into the proposed model to operate the transformation of instances and
learn attention weights to allow us to find key patches. To perform a bal-
anced training, we introduce adaptive weighing in each training bag to
explicitly adjust the weight distribution in order to concentrate more on
the contribution of hard samples. Based on the learned attention weights,
we further develop a solution to boost the classification performance by
generating the bags with hard negative instances. We conduct extensive
experiments on colon and breast cancer histopathology data and show
that our framework achieves state-of-the-art performance.

1 Introduction

Deep learning has become increasingly popular in the medical imaging area.
However, due to high computational cost, working on whole slide histopathol-
ogy images (WSIs) with gigapixel resolution is challenging. As a consequence,
some approaches attempt to divide WSIs into small patches [5], and predict the
final diagnosis of a WSI without providing the pixel-level annotations. To alle-
viate the annotation efforts, multiple instance learning (MIL) is introduced and
explored for weakly annotated WSIs [21], where a WSI is considered as a bag,
and the patches of that WSI are regarded as instances. Hence, the problem is
cast as dealing with a bag of instances for which a single class label is assigned to
the WSI. However, providing insights into the contribution of each instance to
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Fig. 1. The architecture of the end-to-end deep CNN model with adaptive attention
mechanism. The input is the bag of instances (patches of each WST), which are fed into a
CNN model to produce the latent representation of each instance. Then the embeddings
of instances go through a fully connected network with the attention weights generated.
The learned weights are multiplied with the embeddings of instances in element-wise
to be classified by the classifier.

the bag label is crucial to medical diagnosis. Furthermore, if the features of the
negative instances are not well learned, the model will be prone to predict a bag
with many negative instances to be a positive bag because of the bias issue [4]. In
Liu et al.’s work [IT], the concept of key instances is discussed, which indicates
that in the MIL task, discovering the key instances that trigger the bag label is
critical. Thus, one reason for a model to make a wrong prediction about a neg-
ative bag is that some challenging instances mislead the model. This will affect
decision making of a medical diagnosis model, as a single challenging instance
in a WSI may lead to a wrong diagnosis result. The challenging instances herein
are referred to as hard negative patches (instances) which are incorrectly
classified as positive by the prediction model. The other prominent challenge
in training a deep model for WSIs is the training imbalance, which means the
model tends to become biased towards learning from limited negative patches
together with many positive patches.

To address these challenges, we propose an approach that generates the hard
negative instances in histopathology images based on instance-level adaptive
weighting. Specifically, we incorporate the attention mechanism into the training
model, which is computed with adaptive weight loss to explicitly assign larger
weights to hard negative instances. The selected instances are used to constitute
hard training bags through a bag generation algorithm to further improve the
training accuracy. The overview of our framework is shown in Fig.[Il The major
contributions of this paper are summarised below.

— We propose a MIL model that incorporates adaptive attention mechanism
into an end-to-end deep CNN to detect key instances for histopathology
image analysis.

— We present a strategy that is able to address the training imbalance issue
through adaptive weighting distribution on negative samples.

— We develop a bag generation algorithm based on the selected hard negative
instances and compose the hard bags for the improved classification training.

— Extensive experiments are conducted on real datasets. Experimental results
show that our method improves the accuracy, significantly minimizes false
positive rate, and also achieves state-of-the-art performance.



2 Related Work

MIL on Histopathology Images Different MIL approaches were proposed to
work on medical images [BI7IT0I2]. A two-stage Expectation Maximization based
algorithm combined with a deep convolutional neural network (CNN) works
well to classify instances on multiple medical datasets [5]. In Kandemir et al.’s
work [7], a Gaussian process with relational learning is introduced to exploit the
similarity between instances of Barretts cancer dataset. To relate the instances
and the bags, different permutation-invariant pooling approaches with CNN have
been proposed. One solution is noisy-and pooling function with CNN, which has
achieved promising results on medical images [10]. Heather D. Couture et al. [2]
adopt an instance-based approach and aggregate the predictions of patches by
using a quantile function on breast cancer. In this paper, our work aims to
augment the CNN training with attention mechanism to attentively select hard
samples, which achieves state-of-the-art performance on colon cancer and breast
cancer dataset [16l/7].

Instance-Level Weights The attention mechanism has become well known
in deep learning, especially for natural language processing tasks and image
representation learning [9IRI242322]. For MIL problems, attention is represented
by the weights of each instance in a bag, a higher weight means more attention.
The method to obtain instance weights was first proposed in Nikolaos Pappas and
Andrei Popescu-Beliss’s work [13], where the weights of instances were trained in
a linear regression model. They improved the previous method by using a single
layer neural network [14]. A more recent solution was introduced, where the
weights were learned by a two-layer neural network [6]. However, these works did
not further analyze the generated attention weights. In this work, we propose a
method that exploits the relation among the weights and reuses them to improve
the model performance.

Hard Negative Mining The main idea of hard negative mining is to repeat-
edly bootstrap negative examples by selecting false positives which the detector
incorrectly classifies [3]. Hard negative mining is originally used in object detec-
tion tasks, where the datasets usually involve overwhelming easy examples [I5].
Recently, this simple but effective technique is commonly used in the medical
domain. Difficult negative regions are extracted from the training set to boost
model performance on lymph nodes [19] and breast cancer WSIs [1]. Whilst these
works make advances in this domain, to our knowledge, there is no work which
addresses hard negative mining for MIL tasks. In this paper, we propose an ap-
proach which is able to detect hard negative instances by utilizing the attention
weight given for each instance in a bag. Based on this, we propose several hard
negative bag generation algorithms. As shown in the experiment, our proposed
approach achieves significant improvement in comparison with the baselines.



3 Owur Method

Given a histology image (bag) X; with its label C' € {0,1}, and its instances
Xij € X4, 7=1,2,...,N;, our goal is to identify a set of hard negative instances
from negative bags X; with C; = 0. We define X; = {hi1,ha,...,hp} as the set of
hard negative instances identified from the negative bags. We generate hard neg-
ative bags from X; and use these bags in the training step to improve accuracy.
To this end, we develop an instance-level, attention-based CNN model which
determines the instance weights by inspecting their corresponding response to
contribute the final prediction outcome. The attention selection of key instances
allows us to detect the hard negative instances leading to false positives. Then,
we propose a bag generation algorithm which produces new bags with selected
hard negative patches for retraining.

Instance-Level Adaptive Weighing Attention We implement a neural net-
work fy (+) to transform the j-th instance in the i-th bag into a low-dimensional
embedding g;; = fs (Xi;), where g;; € RM. To get the bag representation which
is permutation-invariant, a max or a mean aggregation is usually used in the
MIL problem [10]. However, neither of them can be trained to get the instance
weights which are needed in our case. As a result, a weighted average aggregation
method is used. Given the embedding-based instances G; = {gi1, gi2 -+, 9iN; }
the weighted average is shown as follows:
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In @), v; € RY*! and U; € RYM are the attention network weight parameters.
A softsign activation function is implemented to ensure proper gradient flow.
We normalize the weights w;; through a softmax function so that all the weights
sum to 1. However, the weights defined in () are not constrained and could
make all the instances receive uniformly distributed weights, which would make
it difficult to identify hard negative instances. To this end, we introduce an
adaptive weighting method to explicitly enlarge the weights difference between
the positive and negative instances:
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where Ny, = |[{X;;|j € pseudo negative instances}| is the number of pseudo
negative instances. In each iteration, the instances are treated as pseudo negative
by thresholding on the average weights in each cycle. The balancing hyper-
parameter A is empirically set to 2 in our paper. We note that when X is set > 1,
the weights of the pseudo negative instances will be reduced. This will increase
the differences between the positive instance and the negative instances. After
obtaining the weighted embeddings, we use a CNN layer for classification. In the
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Fig. 2. The proposed novel hard negative mining process. The training images are first
fed into the deep MIL model with balanced training to select instances to constitute
the false positive bags. We learn attention weights for instances, which can be used
to select the hard instances that fool the model to make the wrong prediction. Next,
the hard negative instances are grouped to form the new hard negative bags by a
bag generation algorithm. The patches firstly go through a pre-trained CNN model
without the last layer to produce the feature vectors. A K-means clustering is then
used to group features into clusters from which hard negative bags are produced by
randomly sampling instances across feature clusters dynamically. Finally, the training
is augmented with hard negative bags for improved accuracy.

end, the weights of instances are learned so that we can make use of them to
mine the hard negative instances.

Hard Negative Instance Mining After the training process finishes, we ob-
tain the false positive bags {Bi, Ba, ..., By}, where each bag B; has the cor-
responding weights of instances as {wj1,wia, ..., win, }, via selecting the hard
negative instances through attention weights:

Hy = {wy | wy > oy + W01} (3)

where o; is the standard deviation and wy is the mean of the weights in the [-th
bag. We group all hard negative instances from all false positive bags together
and obtain the bag X; = {hj,ha,....hy}.

Hard Negative Bag Generation In this stage, new hard negative bags are
generated for re-training the network to further improve the bag prediction accu-
racy. As histology images contain a variety of patterns in negative regions [20], we
propose to select diverse patches into each negative bag such that the deep model
will learn features comprehensively. The overview of the bag generation process is
shown in Fig.[2l The hard negative instances first go through a pre-trained CNN
model to convert to feature vectors. The features are then clustered by the K-
means algorithm into ¢ feature groups Cy, Cs, ..., C., which contain Ny, N, ..., N,



items. To conform to the training set bag size, we empirically generate the i-th
new bag B; which has a Gaussian random size with ¢ and u, where o is the
standard deviation and p is the mean of all training bag sizes. We limit the size
from Zin t0 Zimar Where Zp,i, and Z,,4, are the minimum and maximum bag
size respectively of the training set. We follow a weighted sampling strategy that
randomly selects instances from each cluster and puts in B;. The possibility to
designate a cluster to sample instance is denoted as P; = Z:CL

N;°
j=1""7

4 Experiments

Datasets We conduct experiments on two public datasets: Colon Cancer dataset
[16] and UCSB dataset [7]. Colon Cancer dataset involves 100 Hematoxylin and
Eosin stained (H&E) images from 9 patients at 0.55um/pixel resolution. The
histology images include multiple tissue appearance that belongs to both nor-
mal and malignant regions, and can be either used for detection or classification.
In total, 22,444 nuclei are annotated in four classes, i.e. epithelial, inflammatory,
fibroblast, and miscellaneous. A histology image is positive if it consists of at
least one epithelial nucleus. We divide each image into 27 x 27 patches. The
UCSB dataset contains 58 H&E stained image excerpts (26 malignant, 32 be-
nign) from breast cancer patients. The histology image size is 896 x 768 and
we divide each image into 32 x 32 patches. To reduce the noisy patches, each
image is converted from the RGB color space to the HSV space, and an Otsu
algorithm is used to select the optimal threshold values in each channel to filter
the patches [12]. The patches are randomly flipped and rotated for augmenta-
tion. Finally, the color normalization (histogram equalization) is performed on
each patch.

Implementation Details We adopt a deep CNN architecture [16] and a MIL
pooling layer [6] to extract features and a fully connected layer to make the
classification. More detailed treatment for the architecture can be found in the
supplementary material. We follow the work [6], and train the network using an
Adam optimizer with 5; = 0.9 and 2 = 0.999. A cross-entropy loss function is
used for regression. For the Colon Cancer /UCSB dataset, we set the learning rate
=5x107°/5x 1075 and weight decay = 5x10~%/1 x 10~*. Each experiment runs
for 120/300 epochs, and the epoch with the lowest loss is chosen for evaluation.
We evaluate our method using 10-fold/4-fold cross-validation and five repetitions
for each experiment. To ensure fair comparison, we test on the same set of bags
in each fold for the methods.

Results and Discussion Table 1 and Table 2 show the results of our method
against different baselines on two datasets. We compare different hard negative
mining strategies, i.e., the single hard negative bag generation (SB), the ran-
domly generated multiple bags (MB), and the features clustering bags (FMB).
Among these methods, the proposed FMB solution has an overall better result



Table 1. Evaluation of different methods for colon cancer data. The average of five
experiments with its corresponding standard error is reported. SB: single bag hard
negative mining, MB: multiple bags with random sampling, FMB: multiple bags with
features clustering sampling, AUC: area under the curve, FPR: false positive rate.

Method Accuracy Precision Recall F-score AUC FPR
MIL Model 0.904£0.011 0.953+0.014 0.855+0.017 0.901+0.011 0.968+0.009 NA
Our Model 0.906+0.007 0.9124+0.010 0.91640.012 0.9054+0.008 0.95240.012 0.104+0.012

Our Model+SB  0.922£0.004 0.9374+0.011 0.920£0.014 0.9204+0.005 0.97940.004 0.084+0.012
Our Model+MB  0.94240.005 0.963+0.010 0.928+0.017 0.9394+0.006 0.98240.009 0.052+0.010
Our Model+FMB 0.948+0.004 0.980+0.003 0.920+0.006 0.945+0.004 0.983+0.004 0.036+0.007

.cﬂ 'ﬁ:’ -""-’ z e
éd _.“E"fﬁe' )’!u
(@) (b)

S L iAReE
. L R " .
() (d)

Fig. 3. Positive and hard negative examples: (a) Colon data: instances that include
malignant regions. (b) Colon data: detected hard negative instances that mislead the
model to predict a normal bag into a malignant result. (¢) UCSB data: instances
that include malignant regions. (d) UCSB data: detected hard negative instances that
mislead the model to predict a normal bag into a malignant result.

than the others and sets the new state-of-the-art result for colon cancer dataset.
For the UCSB dataset, We achieve the same area under the curve (AUC) result
as the state-of-the-art method in Song et al.’s work [I7]. Fig. Bldemonstrates the
detected hard negative instances by our solution. It is noticeable that compared
to the baseline method, the false positive rate (FPR) is significantly decreased,
and the recall is increased by including hard negative mining, which is particu-
larly essential in histopathology image diagnosis because both false positive and
false negative could result in severe consequences for patients. It is also critical
that the AUC is increased, as this indicates that the generated hard negative
bags do not cause class imbalance issues.

5 Conclusions

In this paper, we introduce an effective approach to MIL tasks on histopathology
data that incorporates the attention mechanism with adaptive weighing into the
deep CNNs for balanced training. To further improve the training accuracy, we
develop a novel hard negative mining strategy by generating the bags with hard
negative instances. Experimental results demonstrate that our approach makes
a decent improvement from the baseline method and achieves state-of-the-art



Table 2. Evaluation of different methods for the UCSB dataset. The average of five
experiments with its corresponding standard error is reported. SB: single bag hard
negative mining, MB: multiple bags with random sampling, FMB: multiple bags with
features clustering sampling, AUC: area under the curve, FPR: false positive rate.

Method Accuracy Precision Recall F-score AUC FPR
MIL Model [6] 0.7554+0.016 0.728+0.016 0.731+£0.042 0.725+0.023 0.799+0.020 NA
SDR+4SVM [17] 0.983 NA NA NA 0.999 NA
Our Model 0.82140.006 0.870+0.032 0.800£0.038 0.806+0.011 0.94240.008 0.220+0.058

Our Model+SB  0.893£0.001 0.9204+0.012 0.886+0.024 0.887+0.015 0.94940.006 0.140+0.019
Our Model+MB  0.936+£0.004 0.936+0.011 0.943£0.014 0.9354+0.005 0.96740.004 0.100+0.016
Our Model+FMB 0.975+0.008 0.975+0.012 0.979+0.009 0.975+0.007 0.999+0.001 0.040+0.019

performance. In future work, we plan to evaluate our model on the larger WSIs.
Moreover, we intend to generalize our model to the multi-class task not limited
in the binary classification.
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