Skip to main content

Multiclass Deep Active Learning for Detecting Red Blood Cell Subtypes in Brightfield Microscopy

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11764))

Abstract

The recent success of deep learning approaches relies partly on large amounts of well annotated training data. For natural images object annotation is easy and cheap. For biomedical images however, annotation crucially depends on the availability of a trained expert whose time is typically expensive and scarce. To ensure efficient annotation, only the most relevant objects should be presented to the expert. Currently, no approach exists that allows to select those for a multiclass detection problem. Here, we present an active learning framework that identifies the most relevant samples from a large set of not annotated data for further expert annotation. Applied to brightfield images of red blood cells with seven subtypes, we train a faster R-CNN for single cell identification and classification, calculate a novel confidence score using dropout variational inference and select relevant images for annotation based on (i) the confidence of the single cell detection and (ii) the rareness of the classes contained in the image. We show that our approach leads to a drastic increase of prediction accuracy with already few annotated images. Our original approach improves classification of red blood cell subtypes and speeds up the annotation. This important step in diagnosing blood diseases will profit from our framework as well as many other clinical challenges that suffer from the lack of annotated training data.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 675115 – RELEVANCE – H2020-MSCA-ITN-2015/H2020-MSCA-ITN-2015. CM acknowledges support from the BMBF (Project MicMode).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andolfo, I., et al.: Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in piezo1. Blood 121(19), 3925–3935 (2013)

    Article  Google Scholar 

  2. Coudray, N., et al.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24(10), 1559 (2018)

    Article  Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)

    Google Scholar 

  4. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115 (2017)

    Article  Google Scholar 

  5. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1183–1192. JMLR. org (2017)

    Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  8. Hw, G.L., Wortis, M., Mukhopadhyay, R.: Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics. Proc. Natl. Acad. Sci. 99(26), 16766–16769 (2002)

    Article  Google Scholar 

  9. Ilhan, H.O., Amasyali, M.F.: Active learning as a way of increasing accuracy. Int. J. Comput. Theory Eng. 6(6), 460 (2014)

    Article  Google Scholar 

  10. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5574–5584 (2017)

    Google Scholar 

  11. Minetti, G., et al.: Red cell investigations: art and artefacts. Blood Rev. 27(2), 91–101 (2013)

    Article  Google Scholar 

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  14. Xu, M., Papageorgiou, D.P., Abidi, S.Z., Dao, M., Zhao, H., Karniadakis, G.E.: A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLoS Comput. Biol. 13(10), e1005746 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

CM acknowledges support from the DFG funded SFB1243 (A09) and the “MicMode-I2T” project (FKZ#017x1710D) funded by the Federal Ministry of Education and Research of Germany (BMBF), DLR project management, in the “e:Med” framework program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carsten Marr or Tingying Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadafi, A. et al. (2019). Multiclass Deep Active Learning for Detecting Red Blood Cell Subtypes in Brightfield Microscopy. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics