Skip to main content

Segmentation of Vessels in Ultra High Frequency Ultrasound Sequences Using Contextual Memory

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

High resolution images provided by Ultra High Frequency Ultrasound (UHFUS) scanners permit the vessel-based measurement of the Intimal-Media Thickness (IMT) in small vessels, such as those in the hand. However, it is challenging to precisely determine vessels in UHFUS sequences due to severe speckle noise obfuscating their boundaries. Current level set-based approaches are unable to identify poorly delineated boundaries and are not robust against varying speckle noise. While recent neural network-based methods, including recurrent neural networks, have shown promise at segmenting vessel contours, they are application specific and do not generalize to datasets acquired from different scanners, such as a traditional High Frequency Ultrasound (HFUS) machine, with different scan settings. Our goal for a segmentation approach was the accurate localization of vessel contours, and generalization to new data within and across biomedical imaging modalities. In this paper, we propose a novel ultrasound vessel segmentation network (USVS-Net) architecture that assimilates features extracted at different scales using Convolutional Long Short Term Memory (ConvLSTM) and segments vessel boundaries accurately. We show the results of our approach on UHFUS and HFUS sequences. To show broader applicability beyond US, we also trained and tested our approach on a Chest X-Ray dataset. To the best of our knowledge, this is the first learning-based approach to segment deforming vessel contours in both UHFUS and HFUS sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohler III, E.R., et al.: High frequency ultrasound for evaluation of intimal thickness. J. Am. Soc. Echocardiogr. 22(10), 1129–1133 (2009)

    Article  Google Scholar 

  2. Gorantla, V., et al.: Acute and chronic rejection in upper extremity transplantation: what have we learned? Hand Clin. 27(4), 481–493 (2011)

    Article  Google Scholar 

  3. Menchon-Lara, R.M., et al.: Fully automatic segmentation of ultrasound common carotid artery images based on machine learning. Neurocomputing 151(1), 161–167 (2015)

    Article  Google Scholar 

  4. Shin, J.Y., et al.: Automating carotid intima-media thickness video interpretation with convolutional neural networks. In: CVPR, pp. 2526–2535 (2016)

    Google Scholar 

  5. Chaniot, J., et al.: Vessel segmentation in high-frequency 2D/3D ultrasound images. In: IEEE International Ultrasonics Symposium, pp. 1–4 (2016)

    Google Scholar 

  6. Mathai, T.S., Jin, L., Gorantla, V., Galeotti, J.: Fast vessel segmentation and tracking in ultra high-frequency ultrasound images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 746–754. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_85

    Chapter  Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. He, K., et al.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. Koltun, V., et al.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)

    Google Scholar 

  10. Arbelle, S., et al.: Microscopy cell segmentation via convolutional LSTM networks. In: IEEE ISBI, pp. 1008–1012 (2019)

    Google Scholar 

  11. Milletari, F., Rieke, N., Baust, M., Esposito, M., Navab, N.: CFCM: segmentation via coarse to fine context memory. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 667–674. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_76

    Chapter  Google Scholar 

  12. Gao, Y., et al.: Fully convolutional structured LSTM networks for joint 4D medical image segmentation. In: IEEE ISBI, pp. 1104–1108 (2018)

    Google Scholar 

  13. Zhang, D., et al.: A multi-level convolutional LSTM model for the segmentation of left ventricle myocardium in infarcted porcine cine MR images. In: IEEE ISBI, pp. 470–473 (2018)

    Google Scholar 

  14. Zhao, C., et al.: Predicting tongue motion in unlabeled ultrasound videos using convolutional LSTM neural network. In: IEEE ICASSP, pp. 5926–5930 (2019)

    Google Scholar 

  15. Basty, N., Grau, V.: Super resolution of cardiac cine MRI sequences using deep learning. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 23–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_3

    Chapter  Google Scholar 

  16. Apostolopoulos, S., De Zanet, S., Ciller, C., Wolf, S., Sznitman, R.: Pathological OCT retinal layer segmentation using branch residual U-shape networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 294–301. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_34

    Chapter  Google Scholar 

  17. Mathai, T.S., et al.: Learning to segment corneal tissue interfaces in OCT images. In: IEEE ISBI, pp. 1432–1436 (2019)

    Google Scholar 

  18. Jaeger, S., et al.: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med Surg. 4(6), 475–477 (2014)

    Google Scholar 

  19. Kingma, D., et al.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

Download references

Acknowledgements

These awards helped us in gathering data and designing initial algorithms: NIH 1R01EY021641, DOD awards W81XWH-14-1-0371 and W81XWH-14-1-0370, NVIDIA Corporation GPU donations, Carnegie Mellon Center for Machine Learning in Health (CMLH). Patent pending, US 62/860,392.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejas Sudharshan Mathai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mathai, T.S., Gorantla, V., Galeotti, J. (2019). Segmentation of Vessels in Ultra High Frequency Ultrasound Sequences Using Contextual Memory. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11765. Springer, Cham. https://doi.org/10.1007/978-3-030-32245-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32245-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32244-1

  • Online ISBN: 978-3-030-32245-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics