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Abstract. Due to the fact that pancreas is an abdominal organ with
very large variations in shape and size, automatic and accurate pancreas
segmentation can be challenging for medical image analysis. In this work,
we proposed a fully automated two stage framework for pancreas segmen-
tation based on convolutional neural networks (CNN). In the first stage,
a U-Net is trained for the down-sampled 3D volume segmentation. Then
a candidate region covering the pancreas is extracted from the estimated
labels. Motivated by the superior performance reported by renowned re-
gion based CNN, in the second stage, another 3D U-Net is trained on
the candidate region generated in the first stage. We evaluated the per-
formance of the proposed method on the NIH computed tomography
(CT) dataset, and verified its superiority over other state-of-the-art 2D
and 3D approaches for pancreas segmentation in terms of dice-sorensen
coefficient (DSC) accuracy in testing. The mean DSC of the proposed
method is 85.99%.

Keywords: Computed Tomography (CT), pancreas · automate segmen-
tation· multi-stage · deep convolutional neural network.

1 Introduction

Automated and accurate organ segmentation is a fundamental step in medi-
cal image analysis, computer assisted diagnosis and radiation therapy plans.
Recently, deep learning based methods such as convolutional neural networks
(CNN) have demonstrated to be powerful tools for organ segmentation thanks
to the availability of large annotated datasets and computational resources com-
pared with traditional segmentation techniques.

One issue in organ segmentation is whether to deal with 2D slices or 3D vol-
umes since training models on both 2D and 3D scans have their advantages and
disadvantages. Specifically, training models on 3D volumes directly can leverage
the inherent spatial and anatomical information in volumetric organs with the
cost of significantly higher computational power and memory than training 2D
models. On the contrary, there are usually more training samples for 2D net-
work training by slicing volumes in three orthogonal planes (sagittal, coronal
and transverse), which sacrifices the 3D geometric information. Moreover, the
fusion of 2D segmentation results to construct 3D mask is necessary. Existing
deep learning based techniques for pancreas segmentation include both cases.

ar
X

iv
:1

90
6.

01
79

5v
2 

 [
cs

.C
V

] 
 2

5 
Ju

l 2
01

9



2 Authors

For example, 2D networks were explored in [8], [9]. 3D network for pancreas
segmentation were studied in [3], [10]. In [2] and [7], the authors combined 2D
and 3D networks for pancreas segmentation.

In addition, segmentation of the small, soft and flexible organs like pancreas
automatically and accurately can be difficult due to its large variations in shape,
size and the varying surrounding contents in comparison with the large organs
(e.g., liver, kidney, stomach, etc.). Thus, much more accurate segmentation can
be achieved by using smaller input region around the target. The coarse-to-fine
multi-stage techniques have been explored widely to address this problem. The
basic idea is to determine the regions of interest (ROIs)/candidate regions in a
coarse step followed by refining the segmentation on the ROIs. However, the ROI
generation through the bounding box estimation for pancreas can be difficult.
Several methods to generate meaningful regions on 2D slices with recall of value
99% have been explored. For example, machine learning based techniques are
implemented in [1], [5] for candidate region generation through bounding box
regression. A fixed-point algorithm during testing stage was studied in [9]. Re-
current neural networks were considered in [8] to keep the consistency between
training and testing stages. [10] proposed to generate candidate regions using
patch-based method.

In this work, we proposed a two-stage method for automated pancreas seg-
mentation on 3D computed tomography (CT) scans, which contains two steps: i)
coarse segmentation on down-sampled 3D volumes for candidate region genera-
tion; ii) to refine the pancreas segmentation on smaller regions-of-interest (ROIs)
at the finest resolution scale. The performance of the proposed algorithm was
demonstrated on the NIH dataset.

2 Method

We denote the 3D CT scans as X with size W × H × D. The down-sampled
CT scans is XR, where the superscript letter R is the decimation factor. The
ground truth masks corresponding to the original and down-sampled CT scans
are represented by Y and Y R. N = W ×H ×D is the total voxel number in the
3D scans. The vector version of the 3D volumes is denoted by their corresponding
lower-case letters. For example, y is the vector version of ground truth mask Y .
The two steps of the proposed method are detailed as follows.

2.1 Coarse scale segmentation

Due to the high dimensionality of the original 3D CT scans, training models on
the original CT scans leads to high cost of the computational power and memory,
which limits the depth and architecture of the networks. Thus, we first train a 3D
U-Net on the down-sampled volume with a decimation factor R = 4. Based on
the tight relationship between segmentation and localization, a candidate region
of the pancreas can be extracted after obtaining the coarse scale segmentation
mask. Note that the normalized bounding box of pancreas in down-sampled
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volume and original volume are the same since down-sampling operation cannot
change the shape and location of the pancreas. Besides, the candidate region
generation is conducted on 3D volumes instead of 2D slices since the location of
pancreas on 3D volumes of different subjects are more consistent than that on
2D slices inter and/or intra subjects.

Fig. 1. CT slices from different subjects. The anatomical properties of pancreas (indi-
cated by red mask) in different slices are quite different.

2.2 Fine scale segmentation

In the second stage, another UNet of the same architecture is trained on the
candidate regions generated in the first stage at the finest resolution scale. Since
we cannot make sure that the ROIs generated in the first stage has both high
precise and recall, the second stage during training and testing procedure are
implemented in different ways.

In training, the bounding boxes are extracted from the ground-truth mask Y ,
and then enlarged by adding margins (10 pixels) along the three orthogonal axes.
The candidate regions cropped with the enlarged ground truth bounding boxes
(denoted as By) from the original 3D CT scans are the inputs of segmentation
network in the second stage. Note that it is possible to train the networks of the
two stages simultaneously since the ROIs used here are generated without the
aid of the output in the first stage.

In testing, after obtaining the estimated label map Ŷ R from the down-sampled
data XR, we generated two bounding boxes in different ways: i) We extracted a
bounding box from Ŷ R directly and then enlarged it by adding margins of 2 pixels
along different axes, denoted asBR

ŷ . A bounding box covering the pancreas on the

original CT scans was finally obtained by rescaling BR
ŷ through multiplying by R

along different axes. ii) After up-sampling Ŷ R with a factor R, one bounding box
was extracted from it directly. The bounding box was then enlarged by adding
10 pixels of margin along different axes. Note that the differences between the
two bounding boxes come from the errors of sampling operation and different
margins considered.

Since two bounding boxes are generated in the testing procedure, two esti-
mated masks can be obtained by feeding the two cropped ROIs into the U-Net
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Fig. 2. Illustration of testing procedure. In Stage 2, three channels for pancreas seg-
mentation are used. For the two channels represented by yellow arrows, two cropped
regions are fed into the same network to produce two binary masks. In the channel rep-
resented by orange arrow, the estimated mask was up-sampled with a factor R=4. The
estimated mask in the three channels are finally combined through marginal voting.

separately. Finally, the two estimated masks and the up-sampled pancreas mask
estimated in the first stage were combined by marginal voting. Fig. 2 explains
the testing procedure of the proposed method.

2.3 Network architecture and loss function

The architecture of the UNet employed in this work is shown in Fig. 3. Note
that the the architecture in stage 1 and stage 2 are the same. The parameters
of the two networks in Stage 1 and Stage 2 can be trained simultaneously since
they are independent during training.

The loss function is formulated as below. Note that the same loss function
are used in both stages.

L = LDice + γLCenter (1)

where γ is the penalty parameter. The dice loss and center loss are given by

LDice = −
∑N

i yiŷi∑N
i yi + ŷi

−
∑N

i (1− yi)(1− ŷi)∑N
i 2− yi − ŷi

(2)

LCenter =

D∑
d=1

|f(Yd)− f(Ŷd)| (3)

where

f(Yd) = (cx,d, cy,d) =
1

ζ

H∑
v=1

W∑
u=1

(u, v) · Yd(u, v) (4)
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Fig. 3. The deep network architecture. The architecture of the U-Net used in the two
stages are the same.

where f(Yd) is the center point of dth slice of mask Y , which is denoted as the

weighted sum of coordinates. ζ =
∑H

v=1

∑W
u=1(u, v)Yd(u, v) is the spatial nor-

malization factor. Note that both the dice loss and center loss are differentiable.
In this work, the parameter γ is fixed as 10−3 for the initial 50 epochs and is
decreased to 0 in the following epochs.

3 Experiments

3.1 Dataset

Our method is evaluated on the public NIH pancreatic segmentation dataset1

[5]. There are 82 contrast-enhanced abdominal CT scans and corresponding an-
notated labels in this dataset. The CT scans have resolutions of 512×512 pixels
with varying pixel sizes and slice thickness between 1.5 − 2.5 mm. The pixel
values for all the CT scans were clipped to [−100, 240] HU, then rescaled to the
range [0, 1]. Following previous work of pancreas segmentation, we used 4-fold
cross-validation to assess the robustness of the model, i.e., 20 subjects are chosen
for validation in each fold.

3.2 Quantitative Assessment Metrics

In both steps, the dice similarity coefficient (DSC) is employed for segmenta-
tion accuracy evaluation. Moreover, recall and intersection-over-union (IoU) are
used to assess the localization performance. The metrics used in this work are

1 https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT



6 Authors

expressed as below.

DSC =
2
∑

i
yiŷi∑

i
yi+

∑
i
ŷi

(5)

Recall =
Area(By∩Bŷ)

Area(By)
(6)

IoU =
Area(By∩Bŷ)

Area(By∪Bŷ)
(7)

where y and ŷ are the ground truth and estimated masks. By and Bŷ are the
bounding boxes extracted from the ground truth and estimated masks.

3.3 Results

Fig. 4 shows the segmentation results from stage 1 and stage 2 respectively of
three subjects in testing. For all the subjects, the overlaps between the estimated
masks and ground truth masks in the second stage are larger compared to the
overlaps in stage one. Quantitative results of the two-stage method are reported
in Table 1. The mean DSC from stage 2 segmentation increases by at least 3%,
compared to the stage 1 result.

The bounding box accuracy evaluated by recall and IoU is summarized in
Table 2. The mean recalls of both bounding boxes are higher than 97%. The
IoUs of the two bounding boxes from different subjects are all higher than 60%
except for one subject whose IoU is lower than 40%. However, the segmentation
performance of this subject also benefits from the two-stage method, i.e., DSC
increased from 39.98% to 57.20%.

The comparison of pancreas segmentation using different methods are re-
ported in Table 3. The proposed method outperforms the others in terms of the
mean DSC.

Table 1. Pancreas segmentation accuracy of the proposed method on the NIH dataset.

Stage 1 Stage 2

Fold Mean DSC Max DSC Min DSC Mean DSC Max DSC Min DSC

F0 82.18% ± 5.28% 89.31% 65.59% 85.82% ± 4.58% 91.20% 74.95%
F1 78.20% ± 10.60% 88.67% 39.98% 84.85% ± 6.75% 90.80% 57.20%
F2 83.23% ± 3.70% 89.61% 76.36% 86.52% ± 2.56% 91.14% 82.00%
F3 81.91% ± 6.84% 88.68% 78.69% 86.79% ± 2.43% 90.64% 82.13%

3.4 Discussion

According to the quantitative results about bounding box estimation in Tab. 2, it
is difficult to achieve high IoUs for different subjects. Thus, a new testing method
different from the training procedure is introduced. In testing, two candidate
regions were extracted with the estimated mask in the first stage. Then, an
up-sampled segmentation mask in the fist stage and two refined segmentation
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Fig. 4. Examples of segmentation results of the proposed method from subjects #9,
#39 and #50. Red and yellow mask indicate the ground truth, prediction regions
respectively. Best viewed in color.

Table 2. Pancreas localization accuracy of the proposed method on the NIH dataset.

Bounding box 1 Bounding box 2

Fold Mean Recall Max Recall Min Recall Mean Recall Max Recall Min Recall

F0 98.44% ± 2.23% 100% 90.24% 99.41% ± 1.69% 100% 93.22%
F1 98.28% ± 2.24% 100% 90.74% 99.38% ± 1.39% 100% 93.89%
F2 97.67% ± 4.18% 100% 85.24% 98.71% ± 3.13% 100% 88.59%
F3 98.42% ± 1.95% 100% 93.42% 99.61% ± 0.73% 100% 97.78%

Fold Mean IoU Max IoU Min IoU Mean IoU Max IoU Min IoU

F0 81.04% ± 5.18% 88.23% 69.55% 69.52% ± 5.39% 77.68% 60.04%
F1 76.93% ± 13.37% 86.78% 20.80% 66.45% ± 11.60% 77.66% 18.35%
F2 77.74% ± 4.33% 84.85% 69.43% 66.78% ± 3.85% 72.61% 59.19%
F3 76.30% ± 12.69% 90.87% 42.42% 66.96% ± 10.15% 83.38% 40.51%
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Table 3. Evaluation of different methods on the NIH dataset.

Method Mean DSC Max DSC Min DSC

Roth et.al. MICCAI’2016 [6] 78.01% ± 8.20% 88.65% 34.11%
Holistically Nested 2D FCN [4] 81.27% ± 6.27% 88.96% 50.69%
Zhou et.al. MICCAI’2017 [9] 82.65% ± 5.47% 90.85% 63.02%

Attention-UNet [3] 83.10% ± 3.80% - -
ResDSN C2F [10] 84.59% ± 4.86% 91.45% 69.62%

Ours (Coarse) 81.91% ± 6.84% 89.61% 39.98%
Ours (Refine) 85.99% ± 4.51% 91.20% 57.20%

masks by majority voting. Although the inconsistency between training and
testing, the proposed method has achieved competitive segmentation accuracy
compared with state-of-the-art algorithms.

It is also interesting to note that more isolated false positive (FP) errors are
introduced in the second stage segmentation for subject ]39. The FP error is
caused by the center loss term used for training. We noticed that the center loss
term contribute to increase the convergence speed during training procedure.
However, it can cause more isolated false positive errors.

4 Conclusions

A two-stage pancreas segmentation method was proposed in this work. Two deep
networks of the same architecture were trained with down-sampled and original
3D CT scans for the purpose of coarse ROI definition and refined segmentation.
We also proposed a novel testing framework, which can easily used for other
small organ segmentation. The proposed method has achieved competitive seg-
mentation accuracy compared with state-of-the-art algorithms.
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