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Abstract. The procedure of aligning a positron emission tomography
(PET) image with a common coordinate system, spatial normalization,
typically demands a corresponding structural magnetic resonance (MR)
image. However, MR imaging is not always available or feasible for the
subject, which calls for enabling spatial normalization without MR, MR-
less spatial normalization. In this work, we propose a template-free ap-
proach to MR-less spatial normalization for [18F]flortaucipir tau PET
images. We use a deep neural network that estimates an aligning trans-
formation from the PET input image, and outputs the spatially normal-
ized image as well as the parameterized transformation. In order to do so,
the proposed network iteratively estimates a set of rigid and affine trans-
formations by means of convolutional neural network regressors as well
as spatial transformer layers. The network is trained and validated on
199 tau PET volumes with corresponding ground truth transformations,
and tested on two different datasets. The proposed method shows com-
petitive performance in terms of registration accuracy as well as speed,
and compares favourably to previously published results.

1 Introduction

One of the necessary criteria for Alzheimer’s disease (AD) diagnosis is the pres-
ence of abnormal tau protein in the brain. Normal tau protein is expressed
ubiquitously in the central nervous system, but starts to aggregate and forms
neurofibrillary tangles in AD. The positron emission tomography (PET) tracer
[18F]flortaucipir binds to the aggregates of tau formed in AD, which makes it
possible to visualize the distribution of tau pathology in the living human brain
by means of tau PET [18].

In research settings, tau deposition is typically quantified in a common tem-
plate space, e.g. defined by a magnetic resonance (MR) template brain image.
This common template space provides anatomical information, which is insuffi-
ciently available in the PET scan alone, and enables region/voxel-wise analysis
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and comparisons. Consequently, this methodology requires spatial alignment of
the acquired tau PET with this common coordinate system. This registration
procedure, referred to as spatial normalization, is the focus of this paper.

Most approaches to spatial normalization utilize MR imaging, that is, the
tau PET image is aligned with the template space via a MR image of the same
subject. The alignment is typically carried out with image registration tools
such as ANTs [1] or SPM [19]. One major disadvantage with this procedure is
the need for the subject’s MR; MR imaging is not necessarily available, and
might be contraindicated or inconvenient for the subject. Enabling tau PET
spatial normalization without MR, MR-less spatial normalization, would most
definitely benefit large scale AD studies.

Common for all previous attempts on MR-less spatial normalization is the
use of standard image registration techniques with an explicit PET template as
target. The most simple approach uses one fix PET template, either computed as
the mean over a set of training PET scans [6, 15], or generated synthetically from
MR template images [11]. More refined approaches use a learned PET template
model to which the native PET scan is iteratively fitted and aligned. Variants
of this approach are linear PET templates [3, 16, 17] and principal component
analysis (PCA) models [7, 8]. A deep learning based method for generating a
synthetic PET template is proposed in [13], where a subject-specific template
is predicted by a generative adversarial network (GAN) for each PET image.
Note that a standard, non-learning, registration method is used when aligning
the PET scan to the GAN-generated template.

None of the above-mentioned methods concern spatial normalization of PET
scans using the tau tracer. These approaches are instead applied to β-amyloid
PET or raclopride PET, i.e. PET scans using tracers that bind to other proteins
than tau and showing less complex and more predictable uptake patterns. The
only work on MR-less spatial normalization for tau PET that we are aware of
is presented in [4], where the authors evaluate the three previously published
template-based approaches [3, 6, 8] on tau PET scans. However, the paper notes
that none of the compared template models (using a mean, linear and PCA
template, respectively) capture the full variation of tau PETs. More specifically, a
(linear) template model using the 1st PCA eigenvector only explained 28% of the
variability within the tau PET dataset (consisting mainly of healthy subjects),
while a PCA model, using the 1st and 2nd eigenvector, explained 42% of the
total variance. For comparison, [7] reports a PCA model for β-amyloid PET
where the 1st eigenvector accounts for 80% of the variability. This makes the
template-based methods less robust and unreliable for general tau PET images.

In this work, we propose a template-free approach to MR-less spatial nor-
malization for tau PET. In contrast to all previous attempts on MR-less spatial
normalization, our method aligns the native PET scan directly without need-
ing an explicit PET template. We use a deep neural network that takes a PET
scan as input and outputs a parameterized transformation as well as the warped
image. The implemented network includes convolutional neural network (CNN)
regressors as well as spatial transformer layers, and is trainable end-to-end. Our
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solution is general, rather than being developed specifically for tau tracers, and
can without alterations be applied to any application involving PET spatial nor-
malization, e.g. PET scans of other body parts and/or with other PET tracers.
We compare our method to a MR-dependent baseline, and to the template-
based methods in [4]. Our approach outperforms the MR-dependent baseline in
terms of registration accuracy as well as speed, and compares favourably to the
template-based approaches.

2 A Deep Learning Approach to Spatial Normalization

Let I be the PET image in its original space and Ialigned be the same image
aligned with the common template space via the coordinate transformation T ,
Ialigned = I ◦ T . We restrict T to be a composition of a rigid transformation TR
and an affine transformation TA, where TR and TA are parameterized as
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We describe the problem of spatially normalizing the input image I as the task
of finding the estimates T̂R and T̂A that minimize a loss

L = LMAE

(
Ialigned, I ◦ (T̂A · T̂R)

)
= LMAE

(
I ◦ (TA · TR), I ◦ (T̂A · T̂R)

)
, (3)

where LMAE is the mean absolute intensity difference over all pixels.
We propose an inference method that uses a deep network consisting of CNN

regressors and spatial transformer layers. We learn the network parameters in a
supervised fashion, i.e. with access to the ground truth transformations TR and
TA. Below, we describe the network in detail.

2.1 Network Design

We design two CNN regressors, FR and FA, that each takes an image as input
and outputs a rigid or an affine transformation respectively. Both networks in-
clude four consecutive convolutional layers followed by a global average pooling
layer and dense layers. All convolutional layers use a 3 × 3 × 3 kernel with a
stride of two, ReLU activations and 20, 30, 40 and 50 filters respectively. The
rigid regressor FR is terminated with six parallel dense layers that each outputs
one of the parameters in (1), while the affine regressor FA is terminated with
twelve parallel dense layers that each outputs one of the parameters in (2).

We pair each CNN with a spatial transformer that warps the input image
according to the predicted transformation. Spatial transformer networks, intro-
duced in [12], are designed to make the warping operation differentiable, and
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have successfully been used in previously published methods for deep medical
image registration, e.g. [2, 10, 14, 20].

We reason that small transformations are easier to predict than large ones,
and we therefore let T̂R and T̂A be estimated in an iterative manner, more
specifically as a composition of smaller transformations, i.e.

T̂R = T̂
(N)
R · . . . · T̂ (2)

R · T̂ (1)
R , T̂A = T̂

(M)
A · . . . · T̂ (2)

A · T̂ (1)
A , (4)

where N and M equal the number of rigid and affine transformations. Note that
this scheme of estimating several consecutive transformations, instead of a single
one, mirrors the scheme that is often present in standard registration methods.

The first rigid transformation T̂
(1)
R is estimated by feeding the original image

I to the rigid regressor. Succeeding rigid transformations are computed with the
warped image as input, i.e.

T̂
(i)
R = FR

[
I ◦
(
T̂

(i−1)
R · . . . · T̂ (1)

R

)]
. (5)

Similarly, the first affine transformation T̂
(1)
A is computed by feeding a rigidly

warped image I ◦ T̂R to the affine regressor. Succeeding affine transformations
are computed with the warped image as input, i.e.

T̂
(i)
A = FA

[
I ◦
(
T̂

(i−1)
A · . . . · T̂ (1)

A · T̂R
)]
. (6)

Note that the warped input image is always computed by feeding the spatial
transformer with the original image I and a composition of all so far computed
transformations. Thanks to the parametrization in (1) and (2), compositions of
transformations can be implemented in a differentiable manner, and the network
can be trained end-to-end.

To speed up learning, and to ensure that the rigid regressor outputs reason-
able rigid transformations, we use an intermediate loss on the rigidly warped
image. Thus, the full loss is given by

L = LMAE

(
I ◦ TR, I ◦ T̂R

)
+ LMAE

(
I ◦ (TA · TR), I ◦ (T̂A · T̂R)

)
. (7)

In summary, the neural network takes the original PET image as input, com-
putes rigid and affine transformations in an iterative manner and outputs the
spatially normalized PET image. Since all the steps are designed to be differen-
tiable, we learn the network parameters using stochastic gradient descent based
methods on the loss (7). The framework is exemplified in Figure 1.

3 Experimental Evaluation

Training and validation data. We use a dataset consisting of 199 subjects from
the BioFINDER study, see http://biofinder.se/. This dataset contains subjects
with a large variability in tau load and diagnosis [18]. The dataset is split into a
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Fig. 1. Schematic illustration of the implemented network when T̂R = T̂
(2)
R · T̂ (1)

R and

T̂A = T̂
(2)
A · T̂ (1)

A . The network takes an image I as input and outputs a composed

transformation T̂A · T̂R as well as the warped image. The network consists of two CNN
regressors, FR and FA, as well as spatial transformer (ST) layers and transformation
composition (TC) layers.

training set (160 subjects) and a validation set (39 subjects). For each subject,
there is a [18F]flortaucipir standardized uptake value (SUV) PET scan (non-
smoothed), as well as ground truth transformations for spatial normalization pre-
computed with a MR-dependent pipeline [9]. This pipeline includes preprocessing
of the MR images (tailor-made for the BioFINDER data) as well as manual
inspection, and when necessary, corrections.

Implementation details. Each PET image is downsampled to a voxel size of
2 × 2 × 2 mm and voxel intensities are standardized image-wise to the range
[-1, 1]. We train and validate on full-size images, 91× 109 × 91 voxels, to learn
large-scale translations, as well as on smaller patches, 33×33×33 voxels, to learn
rotations, scaling and shearing. Note that the network allows for different input
sizes due to the global average pooling layer. The training patches are augmented
by a random brightness shift. Training is done with the Nadam optimizer [5]
and with l2 weight regularization (regularization parameter is set to 10−3). We
use a batch size of 10 and 500 training steps per epoch. The validation loss
monitors early stopping (training stops after 250 epochs without improvement)
and learning rate decay (learning rate is decreased with a factor of 0.95 after 10
epochs without improvement).

Test data. We use two different datasets for evaluation, (i) 37 additional subjects
from the BioFINDER study and (ii) 111 subjects from the ADNI database, see
http://adni.loni.usc.edu/. Compared to the BioFINDER data, the ADNI test set
shows less variability in diagnosis, and contains subjects with a smaller average
tau load. The difference in difficulty can be demonstrated by constructing a sim-
ilar PCA model as in [4] for the both test sets. For the BioFINDER test set, such
a model explains 36% of the variability, while the corresponding model explains
51% for the ADNI test set. Thus, we expect the BioFINDER test set to be more
challenging for template-based approaches than the ADNI test set. Affine and
non-rigid deformations computed by the MR-dependent methods in [4] and [9]
are used as ground truth for the ADNI and the BioFINDER data respectively.
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Compared baselines. We evaluate our approach on the BioFINDER test set for
three setups of rigid and affine transformations estimated in the iterative scheme:

(a) T̂R = T̂
(1)
R , T̂A = T̂

(1)
A , (b) T̂R = T̂

(2)
R · T̂ (1)

R , T̂A = T̂
(1)
A ,

(c) T̂R = T̂
(2)
R · T̂ (1)

R , T̂A = T̂
(2)
A · T̂ (1)

A .
(8)

We also compare our results on the BioFINDER test set with a standard MR-
dependent baseline: the PET image is aligned with the subject’s skull-stripped
T1 MR image via a rigid transformation, and thereafter, this MR image is aligned
with the MR template space via a rigid, an affine and a deformable transforma-
tion. We use the ANTs software [1] with default parameters.

We evaluate the top-performing setup from (a)-(c) on the ADNI test set.
We compare to the three template-based approaches in [4] (using mean, linear
and PCA templates respectively), i.e. all MR-less methods previously evaluated
on tau PET that we know of. Unfortunately, the code for these methods is not
publicly available, but we have got access to paper’s result on the ADNI test set.

Evaluation metrics. To facilitate comparisons between subjects, we evaluate on
SUV ratio (SUVR) images. The SUVR images are computed by normalizing the
images with respect to the tau uptake in the cerebellum. As performance metrics,
we use (i) the absolute percentage error over tau load in the temporal meta-ROI,
defined in [18], which is a composite region including parts of the temporal
cortex closely connected to tau deposition in AD subjects (entorhinal cortex,
parahippocampal and fusiform gyrus, amygdala, inferior and middle temporal
cortices), and (ii) the absolute percentage error over tau load in the whole brain.
All ROIs are extracted from the population atlas used in [4]. Note that the same
(atlas) ROIs are used when computing the SUVR tau load for the ground truth.

We use the mean residual error over the deformation fields (in mm) as an
additional performance metric for the BioFINDER test set. We do not evaluate
this metric on the ADNI test set since we do not have access to the competing
method’s deformation fields.

Experimental results. See Tables 1 and 2 for the experimental results on the
BioFINDER and the ADNI test set respectively. The proposed method clearly
quantifies tau with less errors, and with more reliability, than the MR-dependent
baseline and the compared MR-less approaches. The improvement in tau load
quantification is statistically significant for both the temporal meta-ROI (the
p-value equals 0.8% for a paired t-test of ’PCA templ.’ vs. ’Ours, setup (c)’
in Table 2) as well as for all ROIs. Figure 2 shows Bland-Altman plots of the
tau deposition in the temporal meta-ROI for our top-performing approach (c)
and the methods in [4] evaluated on the ADNI test set. The Bland-Altman
plots confirm that the proposed method handles the most challenging cases, i.e.
where the tau load error is larger than ±0.05, better than the template-based
approaches. Our approach runs for 1.4 seconds per subject on a GeForce GTX
1080 Ti, significantly faster than the MR-dependent baseline, which runs for 30
minutes per subject on an Intel i7-8700 CPU. The run times for the compared
methods in [4] are not reported.
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Table 1. Absolute percentage error over (SUVR) tau load in the temporal meta-ROI
(’SUVR-temp’) and in the whole brain (’SUVR-all’), as well as the mean residual error
over the deformation fields (”MRE”), for three different setups of our approach (a)-(c)
and the MR-dependent baseline (”MR-baseline”), evaluated on the BioFINDER test
set. The table reports the mean ± standard deviation for the BioFINDER test set.

Ours, setup (a) Ours, setup (b) Ours, setup (c) MR-baseline

SUVR-temp 2.30%± 2.41% 2.14%± 2.57% 1.86%± 1.95% 2.04%± 2.58%
SUVR-all 1.70%± 1.55% 1.25%± 2.01% 1.21%± 1.31% 2.17%± 2.52%
MRE 4.2mm± 5.3mm 3.2mm± 3.7mm 2.9mm± 2.2mm 6.7mm± 4.6mm

Table 2. Absolute percentage error over (SUVR) tau load in the temporal meta-ROI
(’SUVR-temp’) and in the whole brain (’SUVR-all’) for the top-performing setup from
Table 1, and for the methods in [4], evaluated on the ADNI test set. The table reports
the mean ± standard deviation.

[4], mean templ. [4], linear templ. [4], PCA templ. Ours, setup (c)

SUVR-temp 1.72%± 2.48% 1.77%± 2.91% 1.57%± 1.47% 1.53%± 1.38%
SUVR-all 1.47%± 2.21% 1.53%± 2.67% 1.41%± 1.34% 1.16%± 0.89%

4 Concluding Discussion

This work proposes a template-free approach to MR-less spatial normalization of
[18F]flortaucipir PET scans, enabled by a deep neural network consisting of CNN
regressors and spatial transformer layers. The network is trained and validated
on 199 PET scans from the BioFINDER study.

We evaluate our method on 37 additional BioFINDER subjects, and outper-
form the standard, significantly slower, MR-dependent baseline. This shows that
our method is robust and able to handle the high diversity among the subjects
in the dataset without needing manual supervision. In addition, we compare the
proposed method to the three methods in [4] evaluated on 111 test subjects from
the ADNI database, which is a less challenging dataset. We perform better than
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Fig. 2. Bland-Altman plot of the temporal meta-ROI SUVR for the compared methods.
The figures show the difference in tau deposition between the MR-less and the MR-
dependent method against the average of the two methods.
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the template-based approaches, despite that (i) our network is trained exclu-
sively on BioFINDER data and run without fine-tuning on the ADNI test set
and (ii) the compared approaches include non-rigid deformation while our does
not.

Two possible extensions are (i) a more thorough evaluation of the optimal
number of rigid and affine transformations used in the iterative scheme, and
(ii) to implement and evaluate non-rigid deformation on top of these. A third
extension could be to consider other loss functions, such as the difference between
the estimated and the ground truth deformation fields.

It would be informative to evaluate our approach on other PET ligands than
the tau tracer, such as a β-amyloid tracer. Further, the proposed approach could,
with negligible modifications, be applied to tasks involving other modalities, e.g.
as an alternative to multi-atlas based brain region parcellation on MR images.
This would yield a larger selection of literature to compare with, as well as
establish the applicability of our method. To allow for such future comparisons,
we will make the code publicly available.

To enable a stand-alone tool for MR-less analysis of [18F]flortaucipir PET
scans, we do not only need MR-less spatial normalization. Region-wise tau quan-
tification demands region segmentations, which are most often derived from the
MR image. It is questionable whether the anatomical information in a PET scan
alone is sufficient for retrieving these regions, but a tool able to do so would surely
challenge the MR-dependent gold standard in tau PET analysis.
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