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Abstract. Estimating the uncertainty in (probabilistic) image registra-
tion enables, e.g., surgeons to assess the operative risk based on the trust-
worthiness of the registered image data. If surgeons receive inaccurately
calculated registration uncertainty and misplace unwarranted confidence
in the alignment solutions, severe consequences may result. For proba-
bilistic image registration (PIR), the predominant way to quantify the
registration uncertainty is using summary statistics of the distribution
of transformation parameters. The majority of existing research focuses
on trying out different summary statistics as well as means to exploit
them. Distinctively, in this paper, we study two rarely examined topics:
(1) whether those summary statistics of the transformation distribution
most informatively represent the registration uncertainty; (2) Does utiliz-
ing the registration uncertainty always be beneficial. We show that there
are two types of uncertainties: the transformation uncertainty, Ui, and
label uncertainty U;. The conventional way of using U; to quantify U, is
inappropriate and can be misleading. By a real data experiment, we also
share a potentially critical finding that making use of the registration
uncertainty may not always be an improvement.
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1 Introduction

Non-rigid image registration is the foundation for many image-guided medical
tasks [II2]. However, given the current state of the registration technology and
the difficulty of the problem, an uncertainty measure that highlights locations
where the algorithm had difficulty finding a proper alignment can be very help-
ful. Among the approaches that characterize the uncertainty of non-rigid image
registration, the most popular, or perhaps the most successful framework is the

probabilistic image registration (PIR) [BIAJ5IGI7ISIOTOTTIT2ITIITAIT5T6IIT]).
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In contrast to traditional “point-estimate” image registration approaches
that report a unique set of transformation parameters that best align two im-
ages, PIR models transformation parameters as random variables and estimates
distributions over them. The mode of the distribution is then chosen as the most
likely value of that transformation parameter. PIR has the advantage that the
registration uncertainty can be naturally obtained from the distribution of trans-
formation parameters. PIR methods can be broadly categorized into discrete
probabilistic registration (DPR) [BI7I8IT3] and continuous probabilistic registra-
tion (CPR) [4U5I6I9TOITTIT2IT4UT5IT6IT7ITS]

Related Work Registration uncertainty is a measure of confidence in image
alignment solutions. In the PIR literature, the predominant way to quantify
the registration uncertainty is using summary statistics of the transformation
distribution. Applications of various summary statistics have been proposed in
previous research: the Shannon entropy and its variants of the categorical trans-
formation distribution were used to measure the registration uncertainty of DPR
[7]; the variance [A[T2T4], standard deviation [I1], inter-quartile range [6120] and
the covariance Frobenius norm [10] of the transformation distribution were used
to quantify the registration uncertainty of CPR. In order to visually assess the
registration uncertainty, each of these summary statistics was either mapped to
a color scheme, or an object overlaid on the registered image. By inspecting the
color of voxels or the geometry of that object, end users can infer the registra-
tion uncertainty, which suggests the confidence they can place in the registration
result. Utilizing the registration uncertainty is presumably an advantage of PIR
[1912021], to date, the majority of existing research focuses on trying out differ-
ent summary statistics and means to exploit the registration uncertainty.

Clinical Motivation In image-guided neurosurgery, surgeons need to correctly
understand the registration uncertainty so as to make better informed decisions,
e.g., If the surgeon observes a large registration error at location A and small
error at location B, without knowledge of registration uncertainty, s/he would
most likely assume a large error everywhere and thus entirely ignore the registra-
tion. With an accurate knowledge of uncertainty, once the surgeon knows that A
lies in an area of high uncertainty while B lies in an area of low uncertainty, s/he
would have greater confidence in the registration at B and other locations of
low uncertainty. If surgeons are influenced by inaccurate amount of registration
uncertainty and place unwarranted confidence in the alignment solutions, severe
consequences may result [6T9120].

The majority of research takes the registration uncertainty for granted. In
this paper, we investigate two rarely examined topics: (1) whether summary
statistics of the transformation distribution most informatively reflect the reg-
istration uncertainty; (2) Does utilizing the registration uncertainty always be
beneficial. In Section 2, we identify and discuss two types of uncertainties: the
transformation uncertainty U; and label uncertainty U). By concrete examples,
we show that the conventional way of using U; to quantify U is inappropriate and



On the Applicability of Registration Uncertainty 3

can be misleading. In Section 3, by a real data example, we share a potentially
critical finding that making use of the registration uncertainty may not always
be an improvement. Finally, we summarize in Section 4. It should be noted that
registration uncertainty is not equal to registration accuracy. There are excellent
works which study standards of registration evaluation [22J2324]). However, here
we focus on the relation among different types of registration uncertainty.

2 The Ambiguity of Registration Uncertainty

For illustration purpose, we use DPR in all examples.

2.1 The DPR Set Up

In the DPR setting, let I; and I respectively be the target and source images
I, I : 27 = R, 2; ¢ R d = 2or 3. The algorithm discretizes the transforma-
tion space into a set of K displacement vectors, D = {dk}le, d; € R?. These
displacement vectors radiate from voxels on I; and point to their candidate
transformation locations on Iy [2]. For every voxel v;, the algorithm computes a
unity-sum probabilistic vector P(v;) = { Py (v;)}_, as the transformation distri-
bution. Py(v;) is the probability of displacement vector di. In a standard DPR,
the algorithm takes a displacement vector that has the highest probability in
P(v;) as the most likely transformation d,y,.

Conventionally, the uncertainty of registered v; is quantified by the Shannon
entropy of P(v;) [7]. Since the algorithm takes d,, as its “point-estimate”, the
entropy provides a measure of the extent of dispersion from d,, of the rest
of displacement vectors in D. If other displacement vectors are all as equally
likely to occur as d,,, then the entropy is maximal, which indicates that it is
completely uncertain which displacement vector should be chosen as the most
likely transformation. When the probability of d,, is much higher than that of
other displacement vectors, the entropy decreases, and there is greater certainty
that d,, is the correct choice.

For example, P(v;) = [0.25,0.25,0.25,0.25] and P(v,) = [0.1,0.7,0.1,0.1]
are two discrete transformation distributions. P(v;) is uniformly distributed,
and its entropy is E(P(v;)) = 2. P(v,) has an obvious peak, and its entropy
is E(P(v,)) =~ 1.36, which is lower than E(P(v;)). For a registered voxel, the
entropy of its transformation distribution is usually mapped to a color scheme,
clinicians can infer the level of confidence of the registration result by the color
of the voxel.

2.2 Transformation Uncertainty and Label Uncertainty

In the context of neurosurgery, the goal of image registration is frequently to map
the pre-operatively labeled tumor, and/or other tissue, onto the intra-operative
patient space for resection. Since registration uncertainty is strongly linked to
the goal of registration, here it should also reflect the confidence in the registered
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Fig. 1. The target image I; and souce image Is ; (b) The discretized transformation
space D; (c) The corresponding tissue label L(dy) for D. .

labels. However, does the conventional uncertainty measure of DPR, which is the
entropy of transformation distribution, truly give insight into the trustworthiness
of registered labels?

In a hypothetical DIR example, I; and I in Fig.1(a) are the intra-operative
target and pre-operative source images, respectively. Voxel v; on I; is the voxel
we want to register. In Fig.1(b), we can see that the discretized transformation
space D = {dk}zzl is a set of nine displacement vectors. Each displacement
vector is linked to a candidate corresponding voxel of v;. The labels L(dy) are
for voxels associated with dg. In this example, there are labels for the tumor
and other tissue, as shown in Fig.1(c).

Fig.2 shows a transformation distribution P(v1) = {Px(v1)})_; and its bar
chart. We observe that Ps(v;) has the highest probability in P(v1); therefore,
d5’s corresponding label, L(ds) = Tumor, will be assigned to the registered v;.

Although P(vy) has its mode at Ps(vy), the entire distribution is more or less
uniformly distributed. The entropy of P(v1), E(P(v1)) ~ 3.15, is close to the
maximum. Therefore, the conventional uncertainty measure will suggest that the
registration uncertainty of v; is very high and highlight it with a bright color.
Upon noticing the high degree of uncertainty in registered vy, surgeons would
place less confidence in its tumor label and make surgical plans accordingly.

D={di d d d& ds d¢ d7 ds do} P
Mode
P(vi) ={10%, 11%, 11%, 12%, 14%, 13%, 11%, 10%, 8%}
14%
L ={L(di) L(d2) L(ds) L(ds) L(ds) L(ds) L(d7) L(ds) L(ds)}
o o o o
IoOOOOOOm SRS
@)

(b)
Fig. 2. (a) P(v1) and corresponding labels; (b) The bar chart of P(v1).

On the other hand, let us take into account the label L(dy) associated with
each dj and form a label distribution. As shown in Fig.3(a), even if dy,...,ds
are different displacement vectors, they correspond to the same label as the
most likely displacement vector ds. If we accumulate the probability for all
labels in £, it is clear that “tumor” is the dominant one. Interestingly, despite
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Fig. 3. (a) Bar chart of the transformation distribution P(v;) taking into account
L(dk); (b) The label distribution of the registered v.

being suggestive of having high registration uncertainty using the conventional
uncertainty measure, the label distribution in Fig.3(b) indicates that it is quite
trustworthy to assign a tumor label to the registered v;. In addition, the entropy
of the label distribution is as low as 0.4, which also differs from the high entropy
value computed from the transformation distribution.

In the example above, there appear to be two kinds of uncertainty. We name
the uncertainty computed from the transformation distribution as the transfor-
mation uncertainty U, and the uncertainty relating to the goal of registration
as label uncertainty Uj. Examples of U] can be uncertainty in a categorical clas-
sification, or uncertainty in the intensity value of registered voxels.

In the PIR literature, the definition of registration uncertainty is ambiguous,
because researchers do not differentiate U; from U, and perhaps subconsciously
use Uy to quantify U). The previous counter-intuitive example demonstrates that
high U; does not guarantee high U). In fact, the value of U; can barely guarantee
any useful information at all about the Uj.

More precisely, for point-estimate image registration, let {2 be the set of all
estimated transformation, and {27, be the set of all possible corresponding labels
(categorical labels or intensity values). The algorithm assigns a transformation
t € {27 to a voxel. By a non-linear function fpoint @ 20 — 21, the voxel will
have its label | € (2, as:

L= Fooint(t)- (1)

In this case, the function fpeins is surjective, and ¢ always has a unique corre-
sponding [. However, in the PIR setting, the voxel transformation becomes a
random variable T'. The corresponding label L is a function of T"

L = fprobo(T). (2)

therefore, it is also a random variable. Even if T" and L are intuitively correlated,
given different image context, there is no guaranteed analytical way to compute
the uncertainty propagation from 7" to L. Thus it’s inappropriate to measure
the uncertainty of L, by the summary statistics of T'.

In the registration community, researchers routinely distinguish between in-
tensity match and e.g. DICE scores. It also makes sense to distinguish the trans-
formation uncertainty and label uncertainty. In practice, Uy and U, around cer-
tain areas, i.e., the tumor boundary, is quite dissimilar. Propagating U; to the
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Fig. 4. (a) Input and result of the CUMC12 data example, v. and v, are two voxels of
interest on the registered source image; (b) The transformation distribution of v, and
ve in the DIR; (c) Label distributions of registered v. and wve.

surgeon, as if it is the U} can mislead them to place unwarranted confidence in
the alignment solution and result in severe consequences.

Real data examples As shown in Fig.4, Iy and I are two brain MRI images
arbitrarily chosen from the CUMC12 dataset. Subsequent to performing a DIR,
we obtained the registered source image I,s. The goal of this registration was
to determine the categorical label, whether it is a ventricle or a white matter,
for registered voxels of interest v, and v,. The transformation distribution of v,
is more uniformly distributed than that of v.. Therefore, conventional entropy-
based methods will report v. as having higher registration uncertainty than v..
However, as we form a label distribution in Fig.4(c), it is clear that v., despite
having a lower Uy, is assigned a label that is more uncertain. Examples that
demonstrate the dissimilarity between U; and Uj can be frequently found in the
registration of various kind of images.

3 Credibility of Label Distribution

Utilizing the registration uncertainty, in particular the full label distribution,
to benefit registration-based tasks is presumably an advantage of PIR. Many
research of registration uncertainty reported positively over its impact in appli-
cations [T9/20/21]. However, to the best of our knowledge, there does not exist
any validation study about whether we should use the registration uncertainty.
In this section, we design an experiment to explore whether utilizing the regis-
tration uncertainty always results in an improvement.

In PIR, the registered voxel has the corresponding label of the most likely
transformation L(d,,), upon which the registration evaluation is also based

[BABI6I7SIOITOTTIT2ITIITATENT6]. Likewise, we can derive the most likely label

L,, from the full label distribution. If utilizing the registration uncertainty, like
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Fig. 5. (a) Input and result of the registration example; (b,c,d,e) Intensity label dis-
tributions of voxels vp,vc,v4 and ve; (f) Approximate locations of tested voxels.

reported in previous research, always be beneficial, then L,, should be always
better than L(d,,).

In the following pilot experiment: an MRI image is arbitrarily chosen from the
BRATS dataset [25] and synthetically deformed.Then we registered the original
data with the deformed data using DIR. By doing so, we know the ground truth
intensity for every registered voxel so that we can compare whether it is L(d,,)
or L,, closer to the ground truth.

Here we are interested in the intensity label distributions of four registered
voxels v, Ve, Uq and ve, shown in Fig.5(b), (c), (d), and (e) respectively. In Fig.5,
the red circle indicates the most likely intensity label L,,, given by the full trans-
formation distribution, the orange circle indicates the corresponding intensity
label of the transformation mode L(d,,), and the green circle is the Ground
Truth (GT). We observe that for vy, Ly, and L(d,,) are both equal to the GT.
On the other hand, L,, and I(dy,) for v.,vq and ve, are not the same. As seen
in Fig.5(c), the L,, of the registered v, is equal to the GT intensity, and is more
accurate than I(dy,). Yet, unexpectedly, for vq and v, their I(d,,) is closer to
the GT than their L,,. Voxels such as vq and v, were found frequently in our
experiments using other real data. This surprising result indicates that utiliz-
ing the full transformation distribution can actually give a poorer/less accurate
estimation than using the transformation mode alone.

Researchers have attempted to present the visualized full label distribution
of functional areas in fMRI to neurosurgeons [20]. However, based on the above
finding, if L,, can give poorer estimation, the full label distribution might also
have questionable credibility. Conveying such false information to surgeons would
certainly be detrimental to the outcome of surgery.

It is noteworthy that in PIR, the estimation of T" and L is influenced by the
choice of hyper parameters, priors, and image context. Other PIR approaches
can yield different findings. Nevertheless, studying the credibility of the label
distribution before using it in practice warrants increased investigation.
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4 Discussion

The majority of research takes the registration uncertainty for granted. We sum-
marize current approaches of quantifying registration uncertainty and point out
some fundamental problems which would make researchers rethink, or even re-
work approaches for quantifying and applying registration uncertainty.

At this stage, even the uncertainty is a useful addition to the registration
result, we recommend treating it with caution: (1) It is advised to distinguish
Uy and U) in applications. Instead of using the unified term ”registration uncer-
tainty”, i.e., we can use Uy to indicate the confidence for a predicted instrument
location in neurosurgery; (2) Since the credibility of label distribution is unclear,
we should avoid using U] in clinical settings and put further effort in studying the
implication of PIR results. We believe that this paper will serve as a foundation
and draw more attention to this topic.
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