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Abstract

While unsupervised variational autoencoders (VAE) have become a powerful tool in neuroimage 

analysis, their application to supervised learning is under-explored. We aim to close this gap by 

proposing a unified probabilistic model for learning the latent space of imaging data and 

performing supervised regression. Based on recent advances in learning disentangled 

representations, the novel generative process explicitly models the conditional distribution of 

latent representations with respect to the regression target variable. Performing a variational 

inference procedure on this model leads to joint regularization between the VAE and a neural-

network regressor. In predicting the age of 245 subjects from their structural Magnetic Resonance 

(MR) images, our model is more accurate than state-of-the-art methods when applied to either 

region-of-interest (ROI) measurements or raw 3D volume images. More importantly, unlike simple 

feed-forward neural-networks, disentanglement of age in latent representations allows for intuitive 

interpretation of the structural developmental patterns of the human brain.

1 Introduction

Generative models in combination with neural networks, such as variational autoencoders 
(VAE), are often used to learn complex distributions underlying imaging data [1]. VAE 

assumes each training sample is generated from a latent representation, which is sampled 

from a prior Gaussian distribution through a neural-network, i.e., a decoder. Inferring the 

network parameters involves a variational procedure leading to an encoder network, which 

aims to find the posterior distribution of each training sample in the latent space. As an 

unsupervised learning framework, VAE has successfully been applied to several problems in 

neuroimaging, such as denoising [1], abnormality detection [2] or clustering tasks [3]. 

However, the use of VAE is still under-explored in the context of supervised regression; i.e., 

regression aims to predict a scalar outcome from an image based on a given set of training 

pairs. For instance in neuroimage analysis, the scalar could be a binary variable indicating if 

a subject belongs to the control or a disease group or a continuous variable encoding the age 

of a subject.

Several attempts have been made to integrate regression models into the VAE framework by 

directly performing regression analysis on the latent representations learned by the encoder 
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[4,5]. These works, however, still segregate the regression model from the autoencoder in a 

way that the regression needs to be trained by a separate objective function. To close the gap 

between the two models, we leverage recent advances in learning disentangled latent 
representations [6,7]. In the latent space, a representation is considered disentangled if 

changes along one dimension of that space are explained by a specific factor of variation 

(e.g., age), while being relatively invariant to other factors (e.g., sex, race) [6]. Herein, we 

adopt a similar notion to define a unified model combining regression and autoencoding. We 

then test the model for predicting the age of a subject solely based on its structural MR 

image.

Unlike a traditional VAE relying on a single latent Gaussian to capture all the variance in 

brain appearance, our novel generative age-predictor explicitly formulates the conditional 

distribution of latent representations on age while being agnostic to the other variables. 

Inference of model parameters leads to a combination between a traditional VAE network 

that models latent representations of brain images, and a regressor network that aims to 

predict age. Unlike the traditional VAE, our model is able to disentangle a specific 

dimension from the latent space such that traversing along that dimension leads to age-

specific distribution of latent representations. We show that through this mechanism the VAE 

and the regressor networks regularize each other during the training process to achieve more 

accurate age prediction.

Next, we introduce the proposed VAE-based regression model in Section 2. Section 3 

describes the experiments of age prediction for 245 healthy subjects based on their structural 

T1-weighted MR images. We implement the model using two network architectures: a 

multi-layer perception for imaging measurements and a convolutional neural network for 3D 

volume images. Both implementations achieve more accurate predictions compared to 

several traditional methods. Finally, we show that the learned age-disentangled generative 

model provides an intuitive interpretation and visualization of the developmental pattern in 

brain appearance, which is an essential yet challenging task in most existing deep learning 

frameworks.

2 VAE for Regression

Fig. 1 provides an overview of the model with blue blocks representing the generative model 

and red blocks the inference model.

The Generative Model

Let X = {x(1), …, x(n)} be a training dataset containing structural 3D MR images of n 
subjects, and C = {c(1), …, c(n)} be their age. We assume each MR image x is associated 

with a latent representation z ∈ ℝM, which is dependent on c. Then the likelihood 

distribution underlying each training image x is p(x) = ∫z, cp(x, z, c), and the generative 

process of x reads p(x, z, c) = p(x|z)p(z|c)p(c), where p(c) is a prior on age. In a standard 

VAE setting [8], the ‘decoder’ p(x|z) is parameterized by a neural network f with the 

generative parameters θ, i.e., p(x |z) ∼ N(x; f(z; θ), I) 3. Different from the traditional VAE is 

the modeling of latent representations. Instead of using a single Gaussian prior to generate z, 
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we explicitly condition z on age c, such that the conditional distribution p(z|c) captures an 

age-specific prior on latent representations. We call p(z|c) a latent generator, from which one 

can sample latent representations for a given age. We further assume the nonlinearity of this 

generative model can be fully captured by the decoder network p(x|z), such that a linear 

model would suffice to parameterize the generator: p(z |c) ∼ N z; uTc, σ2I , uTu = 1. With 

this construction we can see that u is essentially the disentangled dimension [6] associated 

with age; traversing along u yields age-specific latent representations. Note this model does 

not reduce the latent space to 1D but rather links one dimension of the space to age.

Inference Procedure

The parameters of the above generative model can be estimated via maximum likelihood 

estimation (MLE) i.e., by maximizing the sum of log likelihood ∑i = 1
N log p x(i) . For such an 

optimization, we adopt a standard procedure of variational inference and introduce an 

auxiliary function q(z(i),c(i)|x(i)) to approximate the true posterior p(z(i),c(i)|x(i)). In the 

following we omit index i for convenience. In so doing, log p(x) can be rewritten as the sum 

of the KL-divergence DKL between q(z, c|x) and p(z, c|x) and the ‘variational lower-bound’ 

ℒ(x):

logp(x) = DKL(q(z, c |x) p(z, c |x)) + ℒ(x) . (1)

Based on the mean-field theory, we further assume q(z, c|x) = q(z|x)q(c|x).

Then the lower-bound can be derived as

ℒ(x) := − DKL(q(c |x) p(c))
+ Eq(z |x)[logp(x |z)] − Eq(c |x) DKL(q(z |x) p(z |c)) (2)

In the above equation, we formulate q(c|x) as a univariate Gaussian 

q(c |x) ∼ N(c; f x; ϕc , g x; ϕc
2), where ϕc are the parameters of the inference networks. We 

can see that q(c|x) is essentially a regular feed-forward regression network with an additional 

output being the uncertainty (i.e., standard deviation) of the prediction. In this work we call 

q(c|x) a probabilistic regressor. In an unsupervised setting, the KL-divergence of Eq. (2) 

regularizes the prediction of c with a prior. However, in our supervised setting this term can 

be simply replaced by log q(c|x) as the ground-truth of c is known for each training sample 

[9,10]4.

Similar to a traditional VAE, the remaining part of the inference involves the construction of 

a probabilistic encoder q(z|x), which maps the input image x to a posterior multivariate 

Gaussian distribution in the latent space q(z |x) ∼ N(z; f x; ϕz , g x; ϕz
2I). Then the second 

term of Eq. (2) encourages the decoded reconstruction from the latent representation to 

resemble the input [8]. The third term of of Eq. (2) encourages the posterior q(z|x) to 

3when x is binary, a Bernoulli distribution can define p(x|z) ~ Ber(x; f(z;θ))
4In a semi-supervised setting where no informative prior in present, ℍ(q(c |x)), i.e., the entropy of q(c|x), is commonly used to 
replace the last term of Eq. 4 for samples with unknown c [9,10].
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resemble the age-specific prior p(z|c). This is the main mechanism for linking latent 

representations with age prediction: on the one hand, latent representations generated from 

the predicted c have to resemble the latent representation of the input image and on the other 

hand, age-linked variation in the latent space is encouraged to follow a direction defined by 

u. We used the SGVB estimator with the reparametrization trick [8] to optimize the 

expectation in the last two terms of Eq. (2).

Lastly, it has been shown that the supervised training of end-to-end feed-forward neural 

networks often suffers from over-fitting problems, whereas unsupervised autoencoders can 

often learn robust and meaningful intermediate features that are transferable to supervised 

tasks [11]. By combining the two frameworks, our model therefore allows for the sharing of 

low-level features (e.g., by convolutional layers) jointly learned by the autoencoder and 

regressor.

3 Experiments

Understanding structural changes of the human brain as part of normal aging is an important 

topic in neuroscience. One emerging approach for such analysis is to learn a model that 

predicts age from brain MR images and then to interpret the patterns learned by the model. 

We tested the accuracy of the proposed regression model in predicting age from MRI based 

on two implementations5: the first implementation was based on a multi-layer perceptron 

neural network (all densely connected layers) applied to ROI-wise brain measurements 

while the second implementation was based on convolutional neural networks (CNN) 

applied to 3D volume images focusing on the ventricular area. Both implementations were 

cross-validated on a dataset consisting of T1-weighted MR images of 245 healthy subjects 

(122/123 women/men; ages 18 to 86) [12]. There was no group-level age difference between 

females and males (p = 0.51, two-sample t-test).

3.1 Age Prediction Based on ROI Measures

With respect to the perceptron neural network, the input of the encoder were the z-scores of 

299 ROI measurements generated by applying FreeSurfer (V 5.3.0) to the skull-stripped MR 

image of each subject [12]. The measurements consisted of the mean curvature, surface area, 

gray matter volume, and average thickness of 34 bilateral cortical ROI, the volumes of 8 

bilateral subcortical ROIs, the volumes of 5 subregions of the corpus callosum, the volume 

of all white matter hypointensities, the left and right lateral and third ventricles, and the 

supratentorial volume (svol).

The input to the encoder was first densely connected to 2 intermediate layers of dimension 

(128,32) with tanh as the activation function. The resulting feature was then separately 

connected to two layers of dimension 8 yielding the mean and diagonal covariance of the 

latent representation. The regressor shared the 2 intermediate layers of the encoder (Fig. 1b) 

and produced the mean and standard deviation for the predicted age. The decoder took a 

latent representation as input and adopted an inverse structure of the encoder for 

reconstruction.

5Implementation based on Tensorflow 1.7.0, keras 2.2.2. Source code available at https://github.com/QingyuZhao/VAE-for-Regression
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3.2 Age Prediction Based on 3D MR Images

Taking advantage of recent advances in deep learning, the second implementation was build 

upon convolutional neural networks that directly took 3D images as input. All skull-stripped 

T1 images were registered to the SRI24 atlas space and down-sampled to 2mm isotropic 

voxel size. Since it has been well established that the ventricular volume significantly 

increases with age [13], we then tested if the model would learn this structural change in 

predicting age. To do this, each image was cropped to a 64*48*32 volume containing the 

ventricle region and was normalized to have zero mean and unit variance. This smaller field 

of view allowed for faster and more robust training of the following CNN model on limited 

sample size (N=245). Specifically, the encoder consisted of 3 batches of 3*3*3 

convolutional layers with rectified linear unit (ReLU) activation and 2*2*2 max pooling 

layers. The sizes of feature banks in the convolutional layers were (16,32,64) respectively.

Similar to the previous implementation, the extracted features were fed into 2 densely 

connected layers of dimension (64,32) with tanh activation function. The final dimension of 

latent space was 16. The regressor shared the convolutional layers of the encoder and also 

had 2 densely connected layers of (64,32). The decoder had an inverse structure of the 

encoder and used Upsampling3D as the inverse operation of max pooling. Since the CNN-

based implementation had substantially more model parameters to determine than the first 

implementation, L2 regularization was applied to all densely connected layers.

3.3 Measuring Accuracy

The accuracy of each implementation was reported based on a 5-fold cross-validation 

measuring the R2 score (coefficient of determination, the proportion of the variance in age 

that is predictable from the model) and root mean squared error (rMSE). The outcome of 

each approach was compared to 7 other regression methods, of which 6 were non-neural-

network methods as implemented in scikit-learn 0.19.1: linear regression (LR), Lasso, Ridge 

regression (RR), support vector regression (SVR), gradient-boosted tree (GBT), k-nearest 

neighbour regression (K-NN). The last approach was a single neural-network regressor 

(NN), i.e., the component corresponding to q(c|x) without outputting standard deviation.

With respect to the ROI-based experiments, optimal hyperparameters of the scikit-learn 

methods (except for LR) were determined through a 10-fold inner cross-validation (an 

overall nested cross-validation). Specifically, we searched C ∈ {1, 10, …, 103}, γ ∈ {10−2, 

…, 102} for SVR, N ∈ {10, 50, 100, 500} for GBT, α ∈ {10−3, …, 104}, γ ∈ {10−2, …, 

102} for RR, and N ∈ {1, 5, 10, 50} for K-NN.

With respect to the 3D-image-based experiments, nested cross-validation was extremely 

slow for certain methods (e.g. GBT, CNN), so we simply repeated the outer 5-fold cross-

validation using the hyperparameters defined in the above search space and reported the best 

accuracy. The search space of the L2 regularization for NN and our method was 

{0, .001, .01, .1, 1}.
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3.4 Results

As Table 1 shows, age prediction based on 3D images of ventricle was generally more 

accurate than on ROI measurements. The two neural-network-based predictions were the 

most accurate in terms of R2 and rMSE. Fig. 3 shows the predicted age (in the 5 testing 

folds) estimated by our model versus ground-truth. The best prediction was achieved by our 

model applied to the 3D ventricle images, which yielded a 6.9-year rMSE. In the ROI-based 

experiment, our model was more accurate than the single neural-network regressor (NN), 

which indicates the integration of VAE for modeling latent representations could regularize 

the feed-forward regressor network. In the 3D-image-based experiment, our model was more 

accurate than NN either with (Table 1) or without L2 regularization (our model and NN 

yielded R2 of 0.761 and 0.745 respectively). Even though this improvement was not as 

significant as in the ROI-based experiment, our model enabled direct visualization of brain 

developmental patterns.

Indeed, despite the tremendous success of deep learning in various applications, 

interpretability of the black-box CNN (e.g., which input variable leads to accurate 

prediction, or what specific features are learned) remains an open research topic. Most 

existing solutions can only produce a “heat map” indicating the location of voxels that 

contribute to faithful prediction, but this does not yield any semantic meaning of the learned 

features that can improve mechanistic understanding of the brain. Thanks to the generative 

modelling, our formulation provides an alternative way for interpreting the aging pattern 

captured by the CNN. Specifically, Fig. 2 shows the simulated “mean brain images” at 

different ages by decoding age-specific latent representations {z = uTc|c ∈ [18, 86]}, i.e., 

mean of the latent generator p(z|c). We can clearly observe that the pattern learned by the 

model for age prediction was mainly linked to the enlargement of ventricle. This result is 

consistent with current understanding of the structural development of the brain.

Lastly, we show in Figure 3 that the dimension related to age was disentangled from the 

latent space. In both ROI-based and image-based experiments, we trained our model on the 

entire dataset. The resulting latent representations were transformed from the latent space to 

a 2D plane via TSNE and color-coded by the ground-truth age. We observe that one 

direction of variation is associated with age, whereas the unsupervised training of traditional 

VAE does not lead to clear disentanglement.

4 Conclusion and Discussion

In this paper, we introduced a generic regression model based on the variational autoencoder 

framework and applied it to the problem of age prediction from structural MR images. The 

novel generative process enabled the disentanglement of age as a factor of variation in the 

latent space. This did not only produce more accurate prediction than a regular feed-forward 

regressor network, but also allowed for synthesizing age-dependent brains that facilitated the 

identification of brain aging pattern. Future direction of this work includes simultaneously 

disentangling more demographics factors of interest, e.g. sex, disease group, to study 

compounding effects, e.g. age-by-sex effects or accelerated aging caused by disease.
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Fig.1. 
Probabilistic (left) and graphical (right) diagrams of the VAE-based regression model. Each 

image x is assumed to be generated from its representation z, which is dependent on age c 
(blue blocks). The inference model (red blocks) constructs a probabilistic encoder for 

determining the latent representation and a probabilistic regressor for predicting age.
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Fig.2. 
Left: Brain images reconstructed from age-specific latent representations. Right: Jacobian 

determinant map derived from the registration between the 18 year old brain and the 86 year 

old brain. The major expanding region is located on the ventricle.
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Fig.3. 
Upper row: results of ROI-based experiments. Lower row: results of 3D-imagebased 

experiments. Left: Predictions made by our model vs. ground-truth. Middle: Latent 

representations estimated by our model. Right: Latent representations estimated by 

traditional VAE.
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Table 1.

Age prediction accuracy of different methods based on ROI measurements and 3D volume images of ventricle.

LR RR SVR GBT K-NN NN Ours

ROI Measures
R2 0.107 0.336 0.311 0.64 0.535 0.563 0.666

rMSE 14.6 12.6 12.8 9.3 10.5 10.3 9.0

3D Volume
R2 0.737 0.737 0.737 0.719 0.549 0.79 0.808

rMSE 7.8 7.8 7.8 8.2 10.5 7.0 6.9
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