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Abstract. Brain tumor segmentation plays a pivotal role in medical
image processing. In this work, we aim to segment brain MRI volumes.
3D convolution neural networks (CNN) such as 3D U-Net [1] and V-
Net [2] employing 3D convolutions to capture the correlation between
adjacent slices have achieved impressive segmentation results. However,
these 3D CNN architectures come with high computational overheads
due to multiple layers of 3D convolutions, which may make these models
prohibitive for practical large-scale applications. To this end, we propose
a highly efficient 3D CNN to achieve real-time dense volumetric segmen-
tation. The network leverages the 3D multi-fiber unit which consists of
an ensemble of lightweight 3D convolutional networks to significantly
reduce the computational cost. Moreover, 3D dilated convolutions are
used to build multi-scale feature representation. Extensive experimen-
tal results on the BraTS-2018 challenge dataset show that the proposed
architecture greatly reduces computation cost while maintaining high
accuracy for brain tumor segmentation. The source code is available at
https://github.com/China-LiuXiaopeng/BraTS-DMFNet

Keywords: 3D Brain tumor segmentation · 3D Multi-fiber unit · 3D
dilate convolution · light-weight network.

1 Introduction

Recent advances in the treatment of gliomas have increased the demands on
using magnetic resonance imaging (MRI) techniques for the diagnosis, tumor
monitoring, and patient outcome prediction. Accurate segmentation of brain
tumor is critical for diagnosis and treatment planning. However, automated brain
tumor segmentation in multi-modal MRI scans is a challenging task due to the
heterogeneous appearance and shape of gliomas [3].
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A flurry of research has leveraged Convolution Neural Networks (CNNs) for
brain tumor segmentation and achieved great success. Havaei et al. [4] present a
two-pathway CNN architecture and predict the label for each pixel by taking as
input a local image patch in a sliding-window fashion. Ronneberger et al. [5] de-
velop a fully convolutional network (FCN), namely U-Net, to process the entire
image for dense prediction. The network follows an encoder-decoder structure
and is trained end-to-end to produce a full-resolution segmentation. Although
these 2D CNN-based approaches have achieved impressive performance, these
models ignore crucial 3D spatial context given that most clinical imaging data
are volumetric, e.g. 3D MR images. To better represent the 3D volumes of imag-
ing data, Cicek et al. [1] generalize the U-Net from 2D to 3D by exploring 3D
operations, e.g. 3D convolution and 3D max pooling, in the FCN, leading to
the 3D U-Net. Similarly, V-Net [2] uses volumetric convolutions to process MRI
volumes and yields more accurate segmentation than the 2D approaches.

It has been shown that using 3D convolutions in deep neural networks is
an effective way of reasoning volumetric structure [1, 2, 6]. However, using mul-
tiple layers of 3D convolutions suffers from high computational cost compared
with regular 2D CNNs due to an extra dimension. A few attempts have been
made to alleviate this issue by using light-weight network architectures. For ex-
ample, 3D-ESPNet [7] extends ESPNet, a fast and efficient network based on
point-wise convolution for 2D semantic segmentation, to 3D medical image data.
SD-UNet [8] takes advantages of the separable 3D convolution, which divides
each 3D convolution into three parallel branches, in order to reduce the num-
ber of learnable network parameters. However, the performance of these efficient
models is not comparable to the state-of-the-art.

Contribution. In this paper, to bridge the gap between model efficiency and
accuracy for 3D MRI brain tumor segmentation, we propose a novel 3D dilated
multi-fiber network (DMFNet). It builds upon the multi-fiber unit [9], which uses
the efficient group convolution, and introduces a weighted 3D dilated convolu-
tion operation to gain multi-scale image representation for segmentation. Note
that Qin et al. [10] propose the auto-focus convolution layer to improve brain
tumor segmentation via the adaptive weighted dilated convolution. The main
differences lie in that they impose strong constraints on the dilated convolution,
i.e. using softmax to constrain the weights of the parallel dilated convolution
branches and sharing the parameters of the convolution kernels. Our DMFNet
only has 3.88M parameters. With the inference times of 0.019s on one GPU and
20.6s on one CPU for a single 3D volumetric segmentation, it achieves dice scores
of 80.12%, 90.62% and 84.54% respectively for the enhancing tumor, the whole
tumor and the tumor core on the 2018 BraTS challenge [11,12].

2 Method

2.1 Dilated Multi-Fiber (DMF) Unit

3D convolution kernel is normally operated on the entire channels of the feature
maps, which scales up the computational complexity exponentially in terms of
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Fig. 1. (a) A residual unit with two regular convolution layers. (b) The multi-fiber
design consisting of multiple separated residual units, called fibers. (c) The multi-fiber
(MF) unit takes advantage of a multiplexer for information routing. (d) The proposed
dilated multi-fiber (DMF) unit with an adaptive weighting scheme for different dilation
rates. (e) The schematic diagram of the 3D dilated convolution operation. d is the
dilation rate. d = 1 indicates the regular convolution.

floating point operations per second (FLOPs). Group convolution is an effective
solution for model speeding up, which has been explored for efficient network
design, e.g. ShuffleNet [13]. Although the grouping strategy could reduce the
number of parameters, simply replacing the regular convolution with the group
convolution may impact the information exchange between channels and hurt the
learning capacity. Multi-fiber (MF) [9] is proposed for video action recognition
and can facilitate information flow between groups. Inspired by that, we extend
the multi-fiber unit design with an adaptive weighted dilated convolution to
capture the multi-scale features in brain MR images. In the following, we detail
the key components of our DMF unit.

Channel Grouping. The idea of channel grouping is to split the convo-
lutional channels as multiple groups that can reduce the connections between
the feature maps and kernels for parameter saving significantly. As examples
shown in Fig. 1 (a) and (b), the regular residual unit is grouped into g paral-
lel residual units that are called fibers. We assume the kernel size is constant,
e.g. kernel = 3 × 3 × 3 and denote param(a) and param(b) as the param-
eter amounts of Fig. 1 (a) and (b), respectively. Thus, we have param(a) =
kernel × (cin × cmid + cmid × cout), where c∗ is the number of channel. With
the strategy of multiple fibers grouping, the amount of parameter comes to
param(b) = g×kernel× (cin/g×cmid/g+cmid/g×cout/g) = param(a)/g, which
is g times less than param(a).

Multiplexer. To facilitate the information exchange between fibers, the 1×
1 × 1 convolutions, dubbed as multiplexer, are utilized for information routing
among different fibers [9]. It is comprised of two 1 × 1 × 1 convolution layers,
as illustrated in Fig. 1. And the input channel cin is squeezed to cin/4 and then
inflated to cin. By employing two 1×1×1 convolutions (params = cin×cin/4+
cin/4 × cin = c2in/2), it can reduce half of the parameters as compared to using
one 1× 1× 1 convolution (params = c2in). Besides, the residual shortcuts, which
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are placed outside the multiplexer and the entire unit, allow the information pass
through from lower level to higher level directly, leading to enhanced learning
capability without additional parameters.

Dilated Fiber. To enlarge the respective field and capture the multi-scale
3D spatial correlations of the brain tumor lesions, the dilated convolution [14]
is employed. As shown in Fig. 1 (d), the dilated fiber is comprised of three 3D
dilated convolution branches with the dilation rates of d = 1, 2 and 3 respec-
tively. We allocate the learnable weights ω1, ω2 and ω3 to each dilated branches,
and then sum them up. This weighted sum strategy is conductive to select most
valuable information automatically from different field of view. The weight coef-
ficients are one-initialized, which means the branches contribute equally at the
beginning of the training process.

2.2 Dilated Multi-Fiber Network (DMFNet) Architecture

Using the MF and DMF units as the building blocks, the overall encoder-decoder
network architecture of DMFNet is shown in Fig. 2. The 4-channel input corre-
sponds to 4-modal MRI data. The main body of the network is composed by the
MF/DMF units, excluding the first and last convolution layers. In the feature
encoding stage, we apply the DMF unit in the first six encoding units to achieve
multi-scale representation, which is benefited by the various sizes of receptive
field in the dilated convolution. In the decoding stage, the high resolution fea-
tures from the encoder are concatenated with the upsampled features, which is
similar to the U-Net. We adopt the trilinear interpolation for upsampling the fea-
ture maps. Also, batch normalization and ReLU function are performed before
each convolution operation of MF/DMF units.

Fig. 2. The proposed dilated multi-fiber network for 3D MRI brain tumor segmenta-
tion, where g is referred to the number of groups, e.g. g = 16 used in this work. We
use 2-stride convolution to downsample the feature maps.
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3 Experiments and Results

3.1 Experimental setup

Data and evaluation metric. The 3D MRI data, which is provided by the
Brain Tumor Segmentation (BraTS) 2018 challenge [11,12], consists of four kinds
of MR sequences, namely native T1-weighted (T1), post-contrast T1-weighted
(T1ce), T2-weighted (T2) and Fluid Attenuated Inversion Recovery (FLAIR).
Each of them has a volume of 240×240×155. The labels for tumor segmentation
include the background (label 0), necrotic and non-enhancing tumor (label 1),
peritumoral edema (label 2) and GD-enhancing tumor (label 4). The dataset
consists of 285 cases of patients for training and 66 cases for validation. The
performance on the validation set assessed by the online evaluation server
is used to validate the effectiveness of the proposed method. Specifically, the
effectiveness is evaluated by the computational complexity and the segmentation
accuracy. The complexity is determined by the amount of network parameters
and FLOPs (i.e. multiplication and addition) [13]. The segmentation accuracy
is measured by the dice score metrics and Hausdorff95 distance metric, where
ET, WT and TC are referred to the regions of enhancing tumor (label 1), the
whole tumor (label 1, 2 and 4) and the tumor core (label 1 and 4) respectively.

Implementation details. In our experiments, we use a batch size of 12 and
train the DMFNet model on 4 parallel Nvidia GeForce 1080Ti GPUs for 500
epochs. We adopt the Adam optimizer with an initial learning rate α0 = 0.001.
To increase the training data, we use the following data augmentation techniques:
(i) random cropping the MRI data from 240×240×155 voxels to 128×128×128
voxels; (ii) random mirror flipping across the axial, coronal and sagittal planes by
a probability of 0.5; (iii) random rotation with the angle between [−10◦,+10◦];
(iv) random intensity shift between [−0.1, 0.1] and scale between [0.9, 1.1]. The
generalized dice loss (GDL) is employed to train the network. L2 norm is applied
for model regularization with a weight decay rate of 10−5. In the testing phase,
we zero pad the 240×240×155 MRI data in the depth dimension to 240×240×160
(depth dividable by 16) as the network input.

3.2 Experimental results and analysis

Comparison with state-of-the-art. We first conduct five-fold cross-validation
evaluation on the training set, our DMF-Net achieves average dice scores of
76.35%, 89.09% and 82.7% respectively for the enhancing tumor, the whole tu-
mor and the tumor core. We also carry out experiments on the BraTS 2018
validation set and compare our method with the state-of-the-art approaches.
The performance comparison is presented in Table 1. Our proposed DMFNet
achieves scores of 80.12%, 90.62% and 84.54% for ET, WT and TC, respectively.
Compared to the best scores achieved by NVDLMED [15] (single model), it can
be seen that our model only has marginal performance gaps of 0.06% for the
whole tumor, 1.61% for the enhancing tumor and 1.48% for the tumor core re-
spectively. However, our DMFNet has 10× less parameters and 55× less FLOPs.
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Therefore, our method is a much more efficient algorithm yet can achieve com-
parable segmentation accuracy. We also show a visual comparison of the brain
tumor segmentation results of various methods including 3D UNet [1], Kao et
al. [16] and our DMFNet in Fig. 3. It is obvious that DMFNet is able to generate
better segmentation (especially at the class boundaries) due to the multi-scale
representation of dilated convolutions.

Table 1. Performance comparison on the BraTS 2018 validation set.

Model Params(M) FLOPs
Dice score(%) Hausdorff95
ET WT TC ET WT TC

0.75× MFNet (ours) 1.81 13.36 79.34 90.22 84.25 2.59 4.60 5.87
MFNet (ours) 3.19 20.61 79.91 90.43 84.61 2.68 4.68 6.31
DMFNet (ours) 3.88 27.04 80.12 90.62 84.54 3.06 4.66 6.44

3D U-Net [1] 16.21 1669.53 75.96 88.53 71.77 6.04 17.10 11.62
S3D-UNet [8] 3.32 75.20 74.93 89.35 83.09 - - -
3D-ESPNet [7] 3.63 76.51 73.70 88.30 81.40 - - -
Kao et al. [16] 9.45 203.96 78.75 90.47 81.35 3.81 4.32 7.56
No New-Net [17] 10.36 202.25 81.01 90.83 85.44 2.41 4.27 6.52
NVDLMED [15] 40.06 1495.53 81.73 90.68 86.02 3.82 4.52 6.85

Model efficiency. It is also evident from Table 1 that our DMFNet signif-
icantly outperforms the methods which have similar or close model complexity
(# of parameters and FLOPs), i.e. S3D-UNet and 3D-ESPNet. Without using
the dilated convolution, the 3D MFNet further reduces the model complexity.
Moreover, we devise a remarkably lightweight and efficient network (denoted by
0.75× MFNet in Table 1) by reducing the number of channels in MFNet (see
Fig. 2) to 75%. Therefore, it has only 1.81M parameters and 13.36G FLOPs.
Nevertheless, its dice scores still reveal the network has strong learning capabil-
ity for 3D brain tumor segmentation. In addition, DMFNet obtains an average
inference time of 0.019s on one GPU (Nvidia 1080Ti) or 20.6s on one CPU
(E5-2690 v3 @ 2.60GHz) for a single 3D MR image segmentation.

Ablation study. The performance comparison between MFNet and DMFNet
(Table 1) demonstrates that the dilated convolution is able to boost the dice
scores. Since an adaptive weighting strategy is used for convolutions with differ-
ent dilation rates (Fig. 1 (d)), its efficacy is justified in Table 2 by comparing it
with the equal weight scheme (ω1 = ω2 = ω3 = 1). Due to the ability of learn-
ing and selecting the multi-scale context information adaptively, such weighting
strategy results in more favorable scores, in particular for the ET score.

The weights ω1, ω2 and ω3 in the training process are plotted in Fig. 4. It is
noticed that ω1 (green line, corresponds to small receptive field) plays a major
role in the first unit, and its effect is decreasing in the higher layers. While,
we also observe that the network favors the dilated branch with ω3 (red line,
corresponds to large receptive field), which has leading influences in DMF units
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Fig. 3. The visual comparison of MRI brain tumor segmentation results. GT indicates
the ground-truth. The regions in red represent the necrotic and non-enhancing tumor,
the regions in green represent the peritumoral edema and the regions in blue represent
the GD-enhancing tumor.

2-6. It may be because the kernel with small receptive field is not able to capture
useful semantic information in the higher layers which have small dimension.

4 Conclusion

In this work, we have developed a lightweight and efficient Dilated Multi-Fiber
network, with only 3.88M parameters and around 27G FLOPs, that can achieve
real-time inference for 3D brain tumor segmentation in MRI. To reduce the heavy
computational burden in 3D convolution significantly, we explored multi-fiber
units with the spirit of group convolution. Meanwhile, we introduced a learnable
weighted 3D dilated convolution to gain multi-scale image representation, which
is able to enhance the segmentation accuracy. The experimental results on the
2018 BraTS challenge show that our approach achieved comparable dice sores
(80.12%, 90.62% and 84.54% for ET, WT and TC, respectively) yet with 10×
less model parameters and 50× less computational FLOPs, compared with the
state-of-the-art algorithm, e.g. NVDLMED [15]. This makes our method more
practical for handling large-scale 3D medical datasets.
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Table 2. The effect of the weighting strategy of the dilated sub-fibers.

Model Weighting scheme
Dice score(%)
ET WT TC

DMFNet ω1 = ω2 = ω3 = 1 78.969 90.539 84.207
DMFNet Learnable ω1,ω2,ω3 80.12 90.62 84.54
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Fig. 4. The changing weights ω1, ω2 and ω3 in the training process. DMF unit 1 is the
1st DMF unit and similar to DMF units 2∼6, i.e. the green blocks in Fig. 2.
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