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Abstract. We present DeepTract, a deep-learning framework for esti-
mating white matter fibers orientation and streamline tractography. We
adopt a data-driven approach for fiber reconstruction from diffusion-
weighted images (DWI), which does not assume a specific diffusion model.
We use a recurrent neural network for mapping sequences of DWI values
into probabilistic fiber orientation distributions. Based on these estima-
tions, our model facilitates both deterministic and probabilistic stream-
line tractography. We quantitatively evaluate our method using the Trac-
tometer tool, demonstrating competitive performance with state-of-the-
art classical and machine learning based tractography algorithms. We
further present qualitative results of bundle-specific probabilistic trac-
tography obtained using our method. The code is publicly available at:
https://github.com/itaybenou/DeepTract.git.

1 Introduction

Tractography based on diffusion MRI (dMRI) is an important tool in the study
of white matter (WM) structures in the brain, allowing to visualize and anal-
yse complex neural tracts in brain connectivity studies [7] and investigation of
neurological disorders [4,5,9]. Standard tractography pipelines usually consist of
a diffusion modeling stage, in which local fiber orientations are estimated from
diffusion weighted images (DWI), followed by a tracking stage in which these
orientations are translated into WM streamlines. At the heart of the model-
ing stage lays the problem of finding the local configuration of WM fibers that
gave rise to the measured DWI signal. Since a single brain voxel can contain
tens of thousands of differently oriented fibers, accurate reconstruction of fiber
orientations is a very challenging task.

Current tractography algorithms can be roughly divided into deterministic
approaches, which provide a single streamline orientation in each voxel [2,17],
probabilistic [6], or global [12]. Nevertheless, all of these methods are based
on specific, pre-defined, mathematical models for mapping dMRI signals into
fiber orientation estimates. Among others, these models include the diffusion

ar
X

iv
:1

81
2.

05
12

9v
3 

 [
cs

.C
V

] 
 1

7 
O

ct
 2

01
9



2

tensor model [3], Q-ball imaging [11] and spherical deconvolution [22]. Despite
remarkable progress made, current model-based methods are not without limi-
tations [14]. Each such model makes specific assumptions regarding WM tissue
properties and the dMRI signal, which may vary substantially depending on the
subject and the data acquisition process [20]. Some models also impose specific
requirements on the data quality and acquisition protocol, e.g., a large number of
gradient directions. Therefore, from the user’s point of view, choosing a suitable
model may prove to be a non-trivial task that requires a high level of expertise.

Machine learning (ML) and deep learning (DL) techniques have demon-
strated remarkable abilities in tackling complex problems in a data-driven rather
than model-based manner, in a wide variety of domains. Recently, such ap-
proaches have been applied to the task of WM tractography, aiming to directly
learn the mapping between input DWI scans and output WM tractography
streamlines. By not assuming a specific diffusion model, data-driven algorithms
can reduce the dependence on data acquisition schemes and require less user
intervention. Neher et al. [20] pioneered this line of work, proposing a super-
vised ML tractography algorithm based on random forest (RF) classifier. The
RF classifier was trained to predict a local fiber orientation from a discrete set
of possible directions, based on the surrounding dMRI values. More recently,
[21] suggested a DL model for fiber tractography, examining a fully-connected
(FC) and a recurrent neural network (RNN) architectures. In contrast to [20],
streamline tractography was addressed as a regression problem by predicting
continuous tracking directions based on sequences of dMRI values. A similar
regression approach was presented in [23] using a multi-layer perceptron (MLP)
network. We note that all of these methods perform deterministic tractog-
raphy, outputting a single streamline direction in each tracking step. Other
DL works have focused strictly on fiber orientation estimation. For example [16]
presented a deep convolutional neural network for estimating discrete fiber orien-
tation distribution functions (fODFs) from dMRI scans. A variation of this idea
was presented in [15], predicting spherical harmonics coefficients for continuous
fODF estimation. These works, however, do not perform fiber tractography.

In this work we present DeepTract, a novel DL framework addressing both
fiber orientation estimation and streamline tractography from DWI scans. To
exploit the sequential nature of tractography data, we address the problem as
a sequential classification task by training an RNN model to predict local fiber
orientations (i.e., classes) along tractography streamlines. Unlike other DL-based
tractography algorithms, our model does not output a single deterministic fiber
orientation in each tracking step. Instead, it provides a probabilistic estimation
of the local fiber orientation distribution in the form of a discrete probability
density function. This enables our model to perform deterministic streamline
tracking, as well as probabilistic tractography by randomly sampling direc-
tions from the estimated distributions. We quantitatively evaluate our method
using the Tractometer tool [10], demonstrating improved or competitive results
compared to state-of-the-art tractography algorithms. We further present quali-
tative results of high-quality probabilistic tractograms generated by our method.
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2 Methods

In the following sections we describe the proposed DeepTract framework: (1) the
input model, (2) how the network learns to predict fiber orientations from DWI
data, (3) how new tractograms are generated from unseen data, and (4) the
implementation details of the neural network’s architecture.

2.1 Input Model

The training data consists of two sets: a DWI set D and its corresponding whole-
brain tractography T = {Si}Ni=1 with N streamlines. Each streamline is repre-
sented by a sequence of equi-distant 3D coordinates, i.e., Si = {pj}ni

j=1.
Pre-Processing : To handle datasets acquired with different gradient schemes,

we first resample the DWI set into K pre-defined gradient directions evenly
distributed on the unit hemisphere, using spherical harmonics (we use K=100).
Each DWI volume is then centred according to its mean and normalized by the
b0 (non-diffusion weighted) volume.

Sequential Input Model : To make our model invariant to spatial transforma-
tions, we feed it with sequences of DWI values instead of directly using the 3D
coordinates of the streamlines. Formally, given a DWI dataset D and a stream-
line Si, the input to our model is the series of DWI vectors measured along
the streamline, i.e. {D(p1), ...,D(pni

)}. Each input entry D(pj) is a vector of K
DWI values measured at location pj , such that a single streamline of length ni
corresponds to an input tensor of size ni ×K.

2.2 Fiber Orientation Estimation

Aiming to facilitate both deterministic and probabilistic tractography, we re-
quire our model to provide a probabilistic estimation of local fiber orientations
prior to tracking. For this purpose, we use a discrete representation of an fODF
by sampling the unit sphere at M evenly-distributed points d = {dm}Mm=1, each
representing a possible fiber orientation. We, therefore, address the problem as
a classification task where each orientation is considered as a separate “class”.
An additional “end-of-fiber” (EoF) class is used for labeling streamline termina-
tion points. Given an input streamline, our model predicts a probability density
function P (d) of M+1 class probabilities at each point along the streamline. We
note that this formulation poses a tradeoff between higher angular resolution,
achieved by increasing the number of classes, and the complexity of the classifi-
cation problem. We used M=724, providing an angular resolution of ∼3.5◦.

Conditional fODFs: Standard fODFs represent the total orientation distribu-
tion function at a voxel location pj , independent of other voxels, i.e. fODFpj (d)
= P (d). Being a sequence-based model, DeepTract has the advantage of utiliz-
ing the “history” of DWI values along an input streamline Si = {p1, ..., pni

}.
Accordingly, it yields a conditional estimation of the fODF at location pj ∈ Si,
i.e. CfODF (pj |Si)(d) = P (d | D (pj) ,D (pj−1) , ...,D (p1)). We note that a di-
rect relation between CfODFs and total (standard) fODFs can be obtained. Let
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(a) Training Process (b) Tracking Process

Fig. 1. Flow of the proposed DeepTract model (unrolled in time) during training (a)
and test-time (b). Steps (1)-(4): Sequences of DWI vectors are fed into the network
to produce CfODF estimations. (5)-(6): During training (a), predicted CfODFs are
compared to the true streamline directions, while at test-time (b) tracking is performed
by iteratively sampling from the predicted CfODFs, starting from a given seed point.

prob (Si) denote the probability of reaching the point pj via path Si, out of all
streamlines passing through pj . Using the total probability theorem, we have:

fODF pj
(d) = ESi

[
CfODF (pj |Si)(d)

]
=
∑
i

prob (Si)CfODF (pj |Si)(d) (1)

2.3 Streamline Tractography

During training, the predicted CfODF at location pj is compared to the “true”
orientation defined by dlabel(pj) = (pj+1 − pj)/ ‖pj+1 − pj‖ (see Fig. 1(a)). The
corresponding class label ypj (d) is the orientation dm ∈ d which is closest to
dlabel(pj), represented by a “1-hot” vector. Once the model is trained, streamline
tractography can be performed on unseen DWI scans in an iterative process as
illustrated in Fig. 1(b). Given an initial seed point p̂1, the corresponding DWI
vector D(p̂1) is fed into the network, which in turn provides CfODF(p̂1) as
output. Deterministic tracking is performed by stepping in the most likely fiber
orientation, i.e. d̂(p̂1) = arg max

d∈d
CfODF (p̂1). Alternatively, probabilistic tracking

can be performed by randomly sampling a direction from the CfODF. Either way,
the streamline is propagated iteratively according to p̂j+1 = p̂j + αd̂(pj), where
α is the step size. The process is repeated until the EoF class is predicted.

2.4 Network Architecture and Loss Function

We implement our model using an RNN, specifically a Gated Recurrent Unit
(GRU) [8]. The proposed network consists of five stacked GRU layers, each
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containing 1000 units. We use ReLU activations for all layers but the last one,
which is a fully-connected (FC) layer followed by a softmax operation. The loss
function for a single input streamline Si is the mean cross-entropy between the
predicted CfODFs and the true labels along the streamline:

Li = − 1

ni

ni∑
j=1

M+1∑
m=1

ypj (dm) log
(
CfODF(pj |Si) (dm)

)
(2)

Label Smoothing: Unlike traditional classification tasks, here the classes are
geometrically structured with a well-defined angular metric. This implies that
different classifications errors should be weighted according to this metric, thus
a 1-hot label (i.e., a delta function) is not suitable. To account for the spatial
structure of the classes, we propose to smooth the true labels by convolving them
with a Gaussian kernel G of width τ on the unit sphere:

ysmooth (d) = δ (d− dlabel) ∗G (d) =
1

Z
exp

(
−] (d, dlabel)

τ

)
(3)

where ] (d, dlabel) is the angle between a direction d and the ground truth di-
rection dlabel, and Z is a normalization constant (see Fig. 2).

Entropy-Based Tracking Termination: During the generative process of
RNNs at test time, accumulated error may divert predictions from the train-
ing data distribution [13], towards “unfamiliar” input values. This may result
in an increased uncertainty of our model’s predictions, manifesting as more
isotropic CfODF estimations and erroneous tracking steps. To alleviate this
problem, we introduce an entropy-based tracking termination criterion, in ad-
dition to the EoF class. Specifically, we terminate the tracking process when-
ever the entropy of a predicted CfODF exceeds the following dynamic thresh-
old Eth (t) = a exp (−t/b) + c, where t is the sequence time step, and a,b and c
are hyperparameters.

3 Experiments and Results

To test the performance of the proposed method we used the ISMRM tractogra-
phy challenge DWI phantom dataset [18]. Our experiments include: 1) Quantita-
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Fig. 2. Label smoothing. The original sparse label (left) is smoothed using a Gaussian
kernel on the unit sphere, transferring probability mass to neighboring classes (right).
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tive evaluation of whole brain tractography using the Tractometer tool. 2) Qual-
itative (visual) demonstration of bundle-specific probabilistic tractography per-
formed by our model.

Pre-Processing: DWIs were denoised [19] and corrected for eddy currents
and head motion. For supervision, whole brain tractography was performed us-
ing Q-ball reconstruction [1] followed by probabilistic tracking using the MITK
diffusion tool. The resulting streamlines were divided into training and validation
sets using a 90%-10% split. Data augmentation was performed by reversing the
orientation of all streamlines in the training set, resulting in ∼400K streamlines.

Training Procedure: Training was performed using the Adam optimizer with a
batch size of 32 streamlines. To avoid overfitting, dropout was used with deletion
probability of 0.3, as well as gradient clipping to avoid exploding gradients.

3.1 Whole Brain Tractography Evaluation

We first evaluate our method using Tractometer - a publicly available online tool
for assessment of whole brain tractography algorithms.

Tractography: We used our trained model to perform whole brain determinis-
tic tractography. Tracking was initialized by randomly placing 200K seed points
within the DWI volume. Using the validation set, the step-size was set to α = 0.5
(in voxels), and the entropy-based stopping parameters were set to a=3, b=10
and c=4.5. Tracking was terminated for high-curvature steps (over 60◦), and
output streamlines longer than 200mm and shorter than 20mm were discarded.

Evaluation: Tractometer evaluates a whole brain tractogram by comparing
it to 25 gold standard streamline bundles, outputting the following scores: three
measures for the correctness of streamline connectivity, i.e. percentage of valid
connections (VC), invalid connections (VC) and non-connections (NC); two mea-
sures for the correctness of identified bundles, i.e. number of valid and invalid
bundles (VB and IB); and three scores for the correctness of voxel coverage, i.e.
overlap (OL), overreach (OR) and F1 scores. Please refer to [10] for more details.

Results: The whole brain tractography generated by the proposed DeepTract
method is shown in Fig. 3, along with those of MITK and the ISMRM challenge
gold standard. The Tractometer scores of our method, when supervised by MITK
and by the gold-standard tractography, are summarized in Table 1. We compare
these results to the performance of MITK (supervisor), the average ISMRM
challenge submission, and two other DL tractography methods [21,23]. The re-
sults demonstrate that DeepTract is competitive or outperforms the examined
methods in most parameters. Specifically, when using the gold standard trac-
tography for supervision, DeepTract demonstrated the best voxel coverage per-
formance, i.e. highest OL and F1 scores. In addition, DeepTract scored the best
false-positive connections rates (lowest IC and NC), and was the only method
to successfully detect all 25 bundles clearly demonstrating the high-limit ca-
pability of the proposed method. We note that our VC score is slightly lower
than [23], however [23] did not report their IC, NC and F1 score, so a complete
comparison to their work is not possible. We further note that even when using
the MITK tractography for supervision, our method demonstrated good overall
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DeepTract (proposed) MITK Ground Truth

Fig. 3. Whole brain tractography results - visual comparison.

Model
Connections (%) Bundles Coverage (%)

VC↑ IC↓ NC↓ VB↑ IB↓ OL↑ OR↓ F1↑
ISMRM mean results 53.6 19.7 25.2 21.4 281 31.0 23.0 44.2

Poulin et al. [21] 41.6 45.6 12.8 23 130 64.4 35.4 64.5

Wegmayr et al. [23] 72 - - 23 57 16.0 28.0 -

MITK (supervisor) 59.1 27.8 13.1 24 69 47.2 31.2 52.5

Proposed (GT supervision) 70.6 19.5 9.9 25 56 69.3 22.7 70.1

Proposed (MITK supervision) 40.5 32.6 22.9 23 51 34.4 17.3 44.2

Table 1. Tractometer evaluation results. Up-arrow represents higher-is-better metrics,
while down arrow represents lower-is-better ones. Best scores are in bold font.

performance, including the best false-positive rates (lowest OR and IB). This re-
sult is probably due to our entropy-based termination criterion, which prevents
streamlines from straying off coherent bundle structures.

3.2 Probabilistic Tracking

We further demonstrate DeepTract’s ability to perform probabilistic tractogra-
phy, using the phantom DWI dataset of the ISMRM challenge. Bundle-specific
tracking was performed by seeding from the endpoints of a gold-standard bun-
dle, and then sampling iteratively from the predicted CfODFs. The process was
repeated T = 20 times to create a probabilistic map counting the number of
“visits” in each voxel. Results for the Frontopontine tract and the Uncinate Fas-
ciculus are shown in Fig. 4, alongside the ground truth bundles. Visual evaluation
shows that the resulting bundles are in-line with the ground truth tractograms.
Also note that higher probabilities were assigned to the bundles’ core, gradually
decreasing as fibers diverge towards their endpoints due to higher uncertainty.
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Frontopontine Tract Uncinate Fasciculus
Ground Truth Proposed Prob. Proposed Ground Truth

Fig. 4. Bundle-specific probabilistic tractography results of the proposed method.

4 Summary and Discussion

We presented DeepTract, the first deep learning method capable of performing
both deterministic and probabilistic tractography from DWI data. We showed
that by combining an RNN-based sequential approach with a discrete classi-
fication framework, our model provides reliable probabilistic fiber orientation
estimations. In a quantitative evaluation, the proposed method outperformed or
was competitive with state-of-the-art classical and DL tractography algorithms.
While larger dMRI and tractography datasets are needed to further progress the
research of data-driven tractography, the results obtained in this work demon-
strate the potential of DL methods for WM tractography applications.
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10. M. Côté, G. Girard, A. Boré, et al. Tractometer: towards validation of tractography
pipelines. Medical image analysis, pages 844–857, 2013.



9

11. M. Descoteaux, E. Angelino, S. Fitzgibbons, et al. Regularized, fast, and robust
analytical Q-ball imaging. Magnetic Resonance in Medicine, pages 497–510, 2007.

12. P. Fillard, C. Poupon, and J. Mangin. A novel global tractography algorithm based
on an adaptive spin glass model. In MICCAI, pages 927–934, 2009.

13. Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

14. B. Jeurissen, M. Descoteaux, S. Mori, et al. Diffusion MRI fiber tractography of
the brain. NMR in Biomedicine, page e3785, 2017.

15. S. Koppers, M. Friedrichs, and D. Merhof. Reconstruction of diffusion anisotropies
using 3D deep convolutional neural networks in diffusion imaging. In Modeling,
Analysis, and Visualization of Anisotropy, pages 393–404. 2017.

16. S. Koppers and D. Merhof. Direct estimation of fiber orientations using deep
learning in diffusion imaging. In International Workshop on Machine Learning in
Medical Imaging, pages 53–60, 2016.

17. M. Lazar, D. Weinstein, J. Tsuruda, et al. White matter tractography using dif-
fusion tensor deflection. Human brain mapping, pages 306–321, 2003.

18. K. Maier-Hein, P. Neher, J. Houde, et al. Tractography-based connectomes are
dominated by false-positive connections. biorxiv, page 084137, 2016.
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