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Abstract. The detection of anatomical landmarks is a vital step for
medical image analysis and applications for diagnosis, interpretation and
guidance. Manual annotation of landmarks is a tedious process that re-
quires domain-specific expertise and introduces inter-observer variabil-
ity. This paper proposes a new detection approach for multiple land-
marks based on multi-agent reinforcement learning. Our hypothesis is
that the position of all anatomical landmarks is interdependent and non-
random within the human anatomy, thus finding one landmark can help
to deduce the location of others. Using a Deep Q-Network (DQN) ar-
chitecture we construct an environment and agent with implicit inter-
communication such that we can accommodate K agents acting and
learning simultaneously, while they attempt to detect K different land-
marks. During training the agents collaborate by sharing their accu-
mulated knowledge for a collective gain. We compare our approach with
state-of-the-art architectures and achieve significantly better accuracy by
reducing the detection error by 50%, while requiring fewer computational
resources and time to train compared to the näıve approach of training
K agents separately. Code and visualizations available: https://github.
com/thanosvlo/MARL-for-Anatomical-Landmark-Detection

1 Introduction

The exact localization of anatomical landmarks in medical images is a crucial
requirement for many clinical applications such as image registration and seg-
mentation as well as computer-aided diagnosis and interventions. For example,
for the planning of cardiac interventions it is necessary to identify standardized
planes of the heart, e.g. short-axis and 2/4-chamber views [1]. It also plays a
crucial role for prenatal fetal screening, where it is used to estimate biometric
measurements like fetal growth rate to identify pathological development [17].
Moreover, the mid-sagittal plane, commonly used for brain image registration
and assessing anomalies, is identified based on landmarks such as the Anterior
Commissure (AC) and Posterior Commissure (PC) [2]. Manual annotation of
landmarks is often a time consuming and tedious task that requires significant
expertise about the anatomy and suffers from inter- and intra-observer errors.
Automatic methods on the other hand can be challenging to design because of
the large variability in the appearance and shape of different organs, varying
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image qualities and artefacts. Thus, there is a need for methods that can learn
how to locate landmarks with highest accuracy and robustness; one promising
approach is based on the use Reinforcement Learning (RL) algorithms [8,2].

Contributions: This work presents a novel Multi-Agent Reinforcement Learn-
ing (MARL) approach for detecting multiple landmarks efficiently and simulta-
neously by sharing the agents’ experience. The main contributions can be sum-
marized as: (i) We introduce a novel formulation for the problem of multiple
landmark detection in a MARL framework; (ii) A novel collaborative deep Q-
network (DQN) is proposed for training using implicit communication between
the agents; (iii) Extensive evaluations on different datasets and comparisons
with recently published methods are provided (decision forests, Convolutional
Neural Networks (CNNs), and single-agent RL).

Related Work In the literature, automatic landmark detection approaches have
adopted machine learning algorithms to learn combined appearance and image-
based models, for example using regression forests [16] and statistical shape pri-
ors [6]. Zheng et al. [19] proposed using two CNNs for landmark detection; the
first network learns the search path by extracting candidate locations, and the
second learns to recognize landmarks by classifying candidate image patches. Li
et al. [13] presented a patch-based iterative CNN to detect individual or multiple
landmarks simultaneously. Ghesu et al. [8] introduced a single deep RL agent to
navigate in a 3D image towards a target landmark. The artificial agent learns
to search and detect landmarks efficiently in an RL scenario. This search can
be performed using fixed or multi-scale step strategies [7]. Recently, Alansary
et al. [2] proposed the use of different Deep Q-Network (DQN) architectures for
landmark detection with novel hierarchical action steps. The agent learns an
optimal policy to navigate using sequential action steps in a 3D image (environ-
ment) from any starting point towards the target landmark. In [2] the reported
experiments have shown that such an approach can achieve state-of-the-art re-
sults for the detection of multiple landmarks from different datasets and imaging
modalities. However, this approach was designed to learn a single agent for each
landmark separately. In [2] it has also been shown that performance of different
strategies and architectures strongly depends on the anatomical location of the
target landmark. Thus we hypothesize that sharing information while attempt-
ing simultaneous detection reduces the aforementioned dependency.

Background: Reinforcement Learning (RL) allows artificial agents to learn
complex tasks by interacting with an environment E using a set of actions A.
The agent learns to take an action a at every step (in a state s) towards the
target solution guided by a reward signal r during training. The main goal is
to maximize the expected rewards in order to find the optimal policy π∗. In Q-
Learning, a state-action value function Q(s, a) is used to approximate the value
of taking an action in a given state. The Q-function is defined as the expected
value of the accumulated discounted future rewards, which can be approximated
iteratively as: Qt+1(s, a) = E[r+γmaxa(Qt(s

′, a′))]. Here γ ∈ [0, 1] is a discount
factor that is used to incorporate the notion of uncertainty in future events. Mnih
et al. [15] proposed an approximation of the Q-function using a CNN by optimiz-
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ing the network cost L(θ) = E

[(
r + γ max

a′
Qtarget(s

′, a′; θ−)−Qnet(s, a; θ)
)2

]
.

Qtarget is a temporary fixed version of Qnet, which gets updated every Ntarget

steps, used in order to avoid destabilization caused by rapid policy changes.
In single-agent RL scenarios, individual models learn solely from states that re-
sult from the actions of an agent. Complementary to this, MARL models learn
from states that result from multiple agents dynamically interacting with their
shared environment. In MARL models, there are K agents interacting with en-
vironment E. Each learns to take an action akt during a state skt using a reward
signal rkt . Thus, the environment is subjected to the actions of all agents, as
shown in Figure 1. Hence, the environment becomes non-stationary as action ai
in state sk will not always lead to the same future, since the future state is also
a function of the other agents. This causes a violation of the Markov assump-
tions needed for the formulation of a RL scenario as a Markov Decision Process
(MDP). To address this issue, [5,18] proposed to establish communication be-
tween the agents, thus taking all agents actions into account.
Any agent communication signifies the exchange of information or knowledge
about the underlying Markov state of the environment. Communication between
agents can be achieved explicitly via a communication protocol like in [4], where
a limited bandwidth channel is learned by the agents, or implicitly by sharing
knowledge in the parameter space or by combining value functions [10]. MARL
scenarios can be classified as collaborative or competitive depending on the re-
lation of the communication between agents. In this paper, we define the col-
laborative scenario as agents that attempt to minimize a common loss function.
Competition between agents signifies a scenario in which agents try to minimize
their own loss function through increasing the loss function of other agents.

2 Proposed Method

In this work, we formulate the problem of multiple anatomical landmark detec-
tion as a multi-agent reinforcement learning scenario. Building upon the work
of [8] and [2] we extend the formulation of landmark detection as a Markov
Decision Process (MDP), where artificial agents learn optimal policies towards
their target landmarks, which defines a concurrent Partially Observable Markov
Decision Process (co-POMDP)[9]. We consider our framework concurrent as the
agents train together but each learns its own individual policy, mapping its pri-
vate observations to a personal action [10]. We hypothesize that this is necessary
as the localization of different landmarks requires learning partly heterogeneous
policies. This would not be possible with the application of a centralized learning
system.

Our RL framework is defined by the States of the environment, the Actions
of the agent, their Reward Function and the Terminal State. We consider the
environment to be a 3D scan of the human anatomy and define a state as a
Region of Interest (ROI) centred around the location of the agent. This makes our
formulation a POMDP as the agents can only see a subset of the environment[11].
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Fig. 1: (a) A single agent and (b) multi agents interact within an RL environment.

We define the frame history to be comprised of four ROIs. In this setup each
agent can move along the x, y, z axis creating thus a set of six actions. The
agents evaluate their chosen actions based on the maximization of the rewards
received from the environment. The reward function is defined as the relative
improvement in Euclidean distance between their location at time t and the
target landmark location. In our multi-agent framework, each agent calculates
its individual reward as their policies are disjoint.

During training, we consider the search to have converged when the agent
reaches a region within 1mm of the target landmark. Episodic play is introduced
in both training and testing. In training, the episode is defined as the time
the agents need to find the landmarks or until they have completed a predefined
maximum number of steps. In case one agent finds its landmark before all others,
we freeze the training and disable network updates derived from this agent while
allowing the other agents to continue exploring the environment. During testing,
we terminate the episode when the agent starts to oscillate around a position or
exceeds a defined maximum number of frames seen in the episode similar to [2].

Collaborative Agents Previous approaches to the problem of landmark de-
tection by [2], [7] and [8] considered a single agent looking for a single landmark.
This means that further landmarks needs to be trained with separate instances of
the agent making a large scale application unfeasible. Our hypothesis is that the
position of all anatomical landmarks is interdependent and non-random within
the human anatomy, thus finding one landmark can help to deduce the location
of other landmarks. This knowledge is not exploited when using isolated agents.
Thus, in order to reduce the computational load in locating multiple landmarks
and increase accuracy through anatomical interdependence, we propose a collab-
orative multi agent landmark detection framework (Collab-DQN). The following
description will assume just two agents for simplicity of presentation. However,
our approach scales up to K agents. For our experiments we show evaluations
using two, three and five agents trained together.

A DQN is composed of three convolutional layers interleaved with maxpool

layers followed by three fully connected layers. Inspired by Siamese architec-
tures [3], in our Collab-DQN we build K DQN networks with the difference that
weights are shared across the convolutional layers. The fully connected lay-
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Fig. 2: Proposed Collaborative DQN for the case of two agents; The
convolutional layers and corresponding weights are shared across all agents
making them part of a Siamese architecture, while the policy making fully con-
nected layers are separate for each agent

ers remain independent since these will make the ultimate action decisions consti-
tuting the policy for each agent. In this way, the information needed to navigate
through the environment are encoded into the shared layers while landmark spe-
cific information remain in the fully connected ones. In Figure 2, we graphically
represent the proposed architecture for two agents. Sharing the weights across
the convolutional layers helps the network to learn more generalized features
that can fit both inputs while adding an implicit regularization to the parame-
ters avoiding overfitting. The shared weights enable indirect knowledge transfer
in the parameter space between the agents, thus, we can consider this model as
a special case of collaborative learning [10].

3 Experimentation

Dataset: We evaluate our proposed framework and model on three tasks: (i)
brain MRI landmark detection with 728 training and 104 testing volumes [12];
(ii) cardiac MRI landmark detection with 364 training and 91 testing volumes [14]
and (iii) landmark detection in fetal brain ultrasound with 51 training and 21
testing volumes. Each modality includes 7-14 anatomical ground truth landmark
locations annotated by expert clinicians [2].
Training: During training an initial random location is chosen from the inner
80% of the volume, in order to avoid sampling outside a meaningful area. The
initial ROI is 45× 45× 45 pixels around the randomly chosen point. The agents
follow an ε-greedy exploration strategy, where every few steps they choose a ran-
dom action from a uniform distribution while during the remaining steps they
act greedily. Episodic learning with the addition of freezing action updates for
the agents that have reached their terminal state until the end of the episode is
used, as detailed in Section 2.
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Method AC PC RC LC CSP

Supervised CNN - - - - 5.47 ± 4.23

DQN 2.46 ± 1.44 2.05 ± 1.14 3.37 ± 1.54 3.25 ± 1.59 3.66± 2.11

Collab DQN 0.93± 0.18 1.05± 0.25 2.52± 2.25 2.41± 1.52 3.78 ± 5.55

Table 1: Results in millimeters for the various architectures on landmarks across
brain MRI and fetal brain US. Our proposed Collab DQN performs better in all
cases except the CSP where we match the performance of the single agent.

Testing: For each agent, we fixed 19 different starting points in order to have a
fair comparison among the different approaches. These points were used for all
testing volumes for each modality at 25%, 50% and 75% of the volume’s size.
For each volume the Euclidean distance between the end location and the target
location was averaged for each agent for each of the 19 runs. The mean distance
in mm was considered to be the performance of the agent in the specific volume.

Multiple tests have been performed using our proposed architecture. Com-
parisons are made against the performance on multi-scale RL landmark detec-
tion [7], fully supervised deep Convolutional Neural Networks (CNN) [13] as
well as a single agent DQN landmark detection algorithm [2]. In case of cardiac
landmarks we compare with [16] that utilizes decision forests. Different DQN
variations like the Double DQN or Duelling DQNs are not evaluated since their
performance provides little to no improvement for the task of anatomical land-
mark detection as exhibited in [2].

Even though our method can scale up to K agents given enough computa-
tional power we limited our comparison to the Anterior Commissure (AC) and
the Posterior Commissure (PC) of the brain; the Apex (AP) and Mitral Valve
Centre (MV) of the heart; the Right Cerebellum (RC), Left Cerebellum (LC)
and Cavum Septum Pellucidum (CSP) for the fetal brain. These are common,
diagnostically valuable landmarks used in the clinical practice and by previous
automatic landmark detection algorithms. For completeness and to facilitate fu-
ture comparisons, we provide our performance comparison also for the training
of three and five agents simultaneously. In Table 1, we show the performance of
the brain MRI and fetal brain US landmarks using the different approaches. In
Table 2 we exhibit the results for three and five agents trained simultaneously
and the results for cardiac MRI landmarks.

Discussion: As shown in Tables 1 and 2 our proposed method significantly
outperforms the current state-of-the-art in landmark detection. p-values from a
paried student-t test for all experiments were in the range 0.01 to 0.0001. We
perform an ablation study by training instances of a single agent with double
the iterations and double the batch size. The study has been conducted on the
Cardiac MRI landmarks that have exhibited the biggest localization difficulties
because of larger anatomical variations across subjects than observed in brain
data. Our results confirm that the agents share basic information across them,
which helps all of them perform their tasks more efficiently. These results sup-
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port our hypothesis that the regularization effect from the gradients collected
from the increased experience and knowledge of the multi-agent system is ad-
vantageous. Furthermore, we created a single agent with doubled memory but
due to the random initialization of experience memory, the agent failed to learn.
In addition, as shown in Table 2(a), the inclusion of more agents leads to simi-
lar or improved results across all landmarks. It is interesting to note that even
though we perform better in all landmarks, our approach can only match the
performance of a single agent DQN for the CSP landmark. We theorize that this
is due to the different anatomical nature of the RC, LC landmarks compared
to the CSP landmark, thus the joint detection does not present an advantage.
We chose to utilize the DQN in this paper rather than existing policy gradient
methods like A3C as the DQN is represented by a single deep CNN that interacts
with a single environment. A3C use many instances of the agent that interact
asynchronously and in parallel. Multiple A3C agents with multiple incarnations
of such environments are computationally expensive. In future work, we will
investigate the application of other methods for multiple-landmarks detection
using either collaborative or competitive agents.

Computational Performance: Training multiple agents together does not
only provide benefits in performance of landmark localization, it also reduces
the time and memory requirements of training. Sharing the weights between the
convolutional layers helps to reduce the trainable parameters by 5% in case of
two agents and by 6% in case of three agents when compared with the parame-
ters of two and three separate networks respectively. Furthermore, the addition
of a single agent to our architecture reduces the required number of parameters
by 6% compared to a single standalone agent. Due to the regularization effect
that multiple agents have on their training and the implicit knowledge transfer,
the training time our approach needs on average 25.000-50.000 less time steps to
converge compared with a single DQN and each training epoch needs approxi-
mately 30 minutes less than the training of 2 epochs in a separate single DQN
(NVIDIA Titan-X, 12 GB). Inference is on par with a single agent at ∼20fps.

Landmark 3 Agents 5 Agents

AC 0.94 ± 0.17 0.98 ± 0.25

PC 0.96 ± 0.20 0.90 ± 0.18

Landmark 3 1.45 ± 0.51 1.39 ± 0.45

Landmark 4 N/A 1.42 ± 0.90

Landmark 5 N/A 1.72 ± 0.61

(a)

Method AP MV

Inter-Obs. Error 5.79 ± 3.28 5.30 ± 2.98

Decision Forest 6.74 ± 4.12 6.32 ± 3.95

DQN 4.47 ± 2.64 5.73 ± 4.16

DQN Batch ×2 4.30 ± 12.07 5.01 ± 4.49

DQN Iterations ×2 4.78 ± 13.87 5.70 ± 18.11

Collab DQN 3.96± 5.07 4.87± 0.26

(b)

Table 2: (a)Multiple agent performance, training and testing were conducted in
the Brain MRI; Landmarks 3,4,5 represent respectively the outer aspect, the
inferior tip and the inner aspect of the splenium of corpus callosum; (b) multi-
agent performance on cardiac MRI dataset;
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4 Conclusion

In this paper we formulated the problem of multiple anatomical landmark detec-
tion as a multi-agent reinforcement learning scenario, we also introduced Collab-
DQN, a Collaborative DQN for landmark detection in brain and cardiac MRI
volumes and 3D US. We train K agents together looking for K landmarks. The
agents share their convolutional layer weights. In this fashion we exploit the
knowledge transferred by each agent to teach the other agents. We achieve sig-
nificantly better performance than the next best method of [2] decreasing the
error by more than 1mm while taking less time to train and less memory than
training K agents serially. We believe that a Bayesian exploration approach is a
natural next step, which will be addressed in future work.
Acknowledgements: Wellcome Trust IEH Award [102431], EPSRC EP/ S013687/
1, NVIDIA for their GPU donations. Brain MRI: adni.loni.usc.edu, US data:
access only with informed consent, subject to approval and formal Data Sharing
Agreement. Caridac data: digital-heart.org.
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