Skip to main content

Dynamic Spectral Graph Convolution Networks with Assistant Task Training for Early MCI Diagnosis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11767))

Abstract

Functional brain connectome, also known as inter-regional functional connectivity (FC) matrix, is recently considered providing decisive markers for early mild cognitive impairment (eMCI). However, in most existing methods, vectorized static FC matrices and some “off-the-shelf” classifiers were used, which may lead to a deprecation of both spatial and temporal information and thus compromise the diagnosis performance. In this paper, we propose dynamic spectral graph convolution networks (DS-GCNs) for early MCI diagnosis using functional MRI (fMRI). First, a dynamic brain graph is constructed so that the connectivity strengths (edges) are derived by time-varying correlations of fMRI signals, and the node signals are computed from T1 MR images. Then, the spectral graph convolution (GC) based long short term memory (LSTM) network is employed to process long range temporal information from the dynamic graphs. Finally, instead of directly using demographic information as additional inputs as in the conventional methods, we proposed to predict gender and age of each subject as assistant tasks, which in turn captures useful network features and facilitates the main task of eMCI classification; we refer this strategy as assistant task training. Experiments on 294 training and 74 testing subjects show that eMCI classification results achieved \(79.7\%\) accuracy (with \(86.5\%\) sensitivity and \(73.0\%\) specificity) and outperformed the state-of-the-art methods. Notably, the proposed method could be further extended to other Connectomics studies, where the graphs are computed through white matter fiber connections or gray matter characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  2. Dvornek, N.C., Ventola, P., Pelphrey, K.A., Duncan, J.S.: Identifying autism from resting-state fMRI using long short-term memory networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 362–370. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_42

    Chapter  Google Scholar 

  3. Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 27(4), 685–691 (2008)

    Google Scholar 

  4. Katz, M.J., et al.: Age and sex specific prevalence and incidence of mild cognitive impairment, dementia and Alzheimer’s dementia in blacks and whites: a report from the einstein aging study. Alzheimer Dis. Assoc. Disord. 26(4), 335 (2012)

    Article  Google Scholar 

  5. Ktena, S.I., et al.: Distance metric learning using graph convolutional networks: application to functional brain networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 469–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_54

    Chapter  Google Scholar 

  6. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994–4003 (2016)

    Google Scholar 

  7. Parisot, S., et al.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  8. Sarraf, S., Tofighi, G.: Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data. In: 2016 Future Technologies Conference (FTC), pp. 816–820. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xing, X. et al. (2019). Dynamic Spectral Graph Convolution Networks with Assistant Task Training for Early MCI Diagnosis. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11767. Springer, Cham. https://doi.org/10.1007/978-3-030-32251-9_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32251-9_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32250-2

  • Online ISBN: 978-3-030-32251-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics