Skip to main content

Coidentification of Group-Level Hole Structures in Brain Networks via Hodge Laplacian

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

One of outstanding issues in brain network analysis is to extract common topological substructure shared by a group of individuals. Recently, methods to detect group-wise modular structure on graph Laplacians have been introduced. From the perspective of algebraic topology, the modules or clusters are the zeroth topology information of a topological space. Higher order topology information can be found in holes. In this study, we extend the concept of graph Laplacian to higher order Hodge Laplacian of weighted networks, and develop a group-level hole identification method via the Stiefel optimization. In experiments, we applied the proposed method to three synthetic data and Alzheimer’s disease neuroimaing initiative (ADNI) database. Experimental results showed that the coidentification of group-level hole structures helped to find the underlying topology information of brain networks that discriminate groups well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://adni.loni.usc.edu.

  2. 2.

    http://www.fil.ion.ucl.ac.uk/spm.

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  2. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Warner, F., Zucker, S.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. In: Proceedings of the National Academy of Sciences (2005)

    Google Scholar 

  3. Dawson, R.J.M.: Homology of weighted simplicial complexes. Cahiers de Topologie et Géométrie Différentielle Catégoriques 31(3), 229–243 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Giusti, C., Ghrist, R., Bassett, D.S.: Two’s company, three (or more) is a simplex. J. Comput. Neurosci. 41(1), 1–14 (2016)

    Article  MathSciNet  Google Scholar 

  5. Horak, D., Jost, J.: Spectra of combinatorial Laplace operators on simplicial complexes. Adv. Math. 244, 303–336 (2013)

    Article  MathSciNet  Google Scholar 

  6. Kim, Y.J., Kook, W.: Harmonic cycles for graphs. Linear Multilinear Algebra 67, 1–11 (2018)

    MathSciNet  Google Scholar 

  7. Lee, H., Chung, M.K., Kang, H., Lee, D.S.: Hole detection in metabolic connectivity of alzheimer’s disease using k-laplacian. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 297–304. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_38

    Chapter  Google Scholar 

  8. Lu, C., Yan, S., Lin, Z.: Convex sparse spectral clustering: Single-view to multi-view. IEEE Trans. Image Process. 25(6), 2833–2843 (2016)

    Article  MathSciNet  Google Scholar 

  9. Wu, P., et al.: Optimal topological cycles and their application in cardiac trabeculae restoration. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 80–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_7

    Chapter  Google Scholar 

  10. Zomorodian, A.: Fast construction of the Vietoris-Rips complex. Comput. Graph. 34, 263–271 (2010)

    Article  Google Scholar 

  11. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33, 249–274 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Data used in preparation of this article were obtained from the ADNI database http://adni.loni.usc.edu. This work is supported by NRF Grants funded by the Korean Government (No. 2013R1A1A2064593, No. 2016R1D1A1B03935463, No. 2015M3C7A1028926, No. 2017M3C7A1048079, No. 2016R1D1A1A02937497, No. 2017R1A5A1015626, and No. 2011-0030815), and NIH grant EB022856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyekyoung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, H. et al. (2019). Coidentification of Group-Level Hole Structures in Brain Networks via Hodge Laplacian. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11767. Springer, Cham. https://doi.org/10.1007/978-3-030-32251-9_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32251-9_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32250-2

  • Online ISBN: 978-3-030-32251-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics