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Abstract. Deep neural networks have been proved efficient for medi-
cal image denoising. Current training methods require both noisy and
clean images. However, clean images cannot be acquired for many prac-
tical medical applications due to naturally noisy signal, such as dynamic
imaging, spectral computed tomography, arterial spin labeling magnetic
resonance imaging, etc. In this paper we proposed a training method
which learned denoising neural networks from noisy training samples
only. Training data in the acquisition domain was split to two subsets
and the network was trained to map one noisy set to the other. A consen-
sus loss function was further proposed to efficiently combine the outputs
from both subsets. A mathematical proof was provided that the pro-
posed training scheme was equivalent to training with noisy and clean
samples when the noise in the two subsets was uncorrelated and zero-
mean. The method was validated on Low-dose CT Challenge dataset
and NYU MRI dataset and achieved improved performance compared
to existing unsupervised methods.
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1 Introduction

Deep neural network has been proved efficient for noise and artifacts reduction
in medical imaging reconstruction [1][2]. Despite of the superior image quality
achieved by neural networks compared to handcrafted prior functions [3], almost
all the neural network based methods require both noisy and clean images during
the training. However, such clean images are not always accessible due to nat-
urally noisy signals acquired in many medical applications. Dynamic imaging,
including dynamic positron emission tomography (PET), dynamic magnetic res-
onance (MR), and computed tomography (CT) perfusion, acquires signals with
rapid temporal change, and the signal quality is limited due to short acquisition
time. Spectral CT has very noisy material images due to the ill-posed decompo-
sition procedure [4]. Arterial spin labeling (ASL) MR also has noisy images due
to the low efficiency in labeling arterial blood with magnetic field, which results
in noisy signals emitted by the labeled blood [5].
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A recent work proposed in 2018, Noise2noise [6], demonstrated that denoising
networks can be learned by mapping a noisy image to another noisy realization of
the same image, and the performance was similar to that using noisy-clean pairs.
However, it requires at least two noise realizations for each training sample, which
is not readily available for most medical images. Even if two noise realizations
are given, Noise2noise framework can only effectively use one of them, which
degraded the achievable image quality. Last but not least, [6] did not clarify
the conditions for Noise2noise to work, which can be problematic for medical
imaging due to the complicated noise characteristics.

In this work we proposed a consensus network for medical imaging which
required only noisy data for training. Our consensus network was inspired by
Noise2noise but with major improvements for medical imaging. The Noise2noise
framework was first analyzed with a newly proposed mathematical theorem,
which further clarified its applicable condition. Based on conditions derived from
the theorem, the acquired signals were split to two sets to reconstruct images
with different noise realizations. The denoising network was then trained to map
one noise realization to the other, with a novel loss function which efficiently ag-
gregated both noise realizations during testing time. The proposed method was
evaluated on Low-dose CT (LDCT) Challenge dataset [7] for quarter-dose CT
image denoising, and New York University (NYU) MR dataset [8] for 4× under-
sampling parallel imaging. Results from both datasets demonstrated improved
performance compared to the original Noise2noise framework and iterative re-
construction methods.

2 Methodology

We will first provide proof for Noise2Noise training, then derive loss function for
the proposed consensus network based on our theorem.

2.1 Noise2noise Training

Given paired clean and noisy images xi,xi + ni ∈ Rn, conventional method to
train denoising network under L2-loss is:

Θc = argmin
Θ

1

N

N∑
i=1

‖f(xi + ni; Θ)− xi‖22 , (1)

where f(x; Θ) : Rn → Rn is the denoising neural network and Θ ∈ Rm is the
parameters to be trained. Equation (1) is referred as Noise2clean training.

Noise2noise training uses two independent noise realizations of each sample
for the training:

Θn = argmin
Θ

1

N

N∑
i=1

‖f(xi + ni1; Θ)− (xi + ni2)‖22 , (2)
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where ni1,ni2 ∈ Rn are two independent noise samples.
The equivalence between Noise2noise (2) and Noise2clean (1) is guaranteed

by theorem 1, which is one of our main contributions:

Theorem 1. If conditional expectation E{ni2|xi + ni1} = 0 ∀ Θ ∈ Rm and i,
then limN→∞Θn = Θc.

Proof. Let yi := f(xi + ni1; Θ) and expand the loss function in (2):

1

N

N∑
i=1

‖yi − (xi + ni2)‖22

=
1

N

N∑
i=1

‖yi − xi‖22 −
1

N

N∑
i=1

2nT
i2yi +

1

N

N∑
i=1

(nT
i2ni2 + 2nT

i2xi)

(3)

The first term is Noise2clean loss (1) and the last term is irrelevant to Θ.
For the second term, according to Lindeberg-Levy central limit theorem:

√
N(

1

N

∑
2nT

i2yi − E{2nT
i2yi})

d−→ N(0, V ar{2nT
i2yi}), (4)

where V ar{x} is the variance of x, and N(0, σ2) is a normal distribution with
variance σ2. As V ar{2nT

i2yi} is finite, the second term in (3) will converge to
E{2nT

i2yi} as N →∞.
The expectation can be written as conditional expectation:

E{2nT
i2yi} = 2E{ET {ni2|yi}yi} = 2E{ET {ni2|xi + ni1}f(xi + ni1; Θ)}, (5)

the last equivalence was due to that yi = f(xi + ni1; Θ) was deterministic.
Equation (5) equals to 0 given the theorem’s assumption, which lead to di-

minishing second term in (3) as N →∞. As the third term was irrelevant to Θ,
we have:

argmin
Θ

1

N

N∑
i=1

‖yi − xi‖22 = argmin
Θ

1

N

N∑
i=1

‖yi − (xi + ni2)‖22 , (6)

as N →∞, which implies Θn = Θc. �

2.2 Consensus Loss Function

The key to Noise2noise training is finding independent and zero-mean noise
realizations ni1 and ni2. For medical imaging, it can be achieved by splitting
the measurement to independent sets which are reconstructed separately. For
example, in low-dose CT, xi + ni1 and xi + ni2 can be images reconstructed
from odd and even projections respectively.

The major drawback of this “data splitting” method was that both xi +
ni1 and xi + ni2 were noisier than the original noisy image, which restricted
the quality of denoised images. To efficiently aggregate both noise realizations,
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they should be taken into consideration in the same loss function. According to
theorem 1, such loss function can be designed under the Noise2clean framework
first, then substituting clean images xi with its noisy version when appropriate.
The following Noise2clean model was considered to derive our consensus loss:

Lc =
1

N

N∑
i=1

∥∥∥∥f(xi + ni1; Θ1) + f(xi + ni2; Θ2)

2
− xi

∥∥∥∥2
2

=
1

N

N∑
i=1

{
1

2
‖yi1 − xi‖22 +

1

2
‖yi2 − xi‖22 −

1

4
‖yi1 − yi2‖22

}
,

(7)

where yi1 := f(xi + ni1; Θ1) and yi2 := f(xi + ni2; Θ2). Θ1,Θ2 ∈ Rm were the
trainable variables. The second equivalence was just simple factorization. This
model effectively aggregated xi + ni1 and xi + ni2 by taking both of them into
consideration in the same loss function.

Similar to theorem 1, xi can be substituted with xi + ni1 or xi + ni2 during
training, and our Noise2noise consensus loss is given as:

Ln =
1

N

N∑
i=1

{
1

2
‖f(xi + ni1; Θ1)− (xi + ni2)‖22 +

1

2
‖f(xi + ni2; Θ2)− (xi + ni1)‖22−

1

4
‖f(xi + ni1; Θ1)− f(xi + ni2; Θ2)‖22

} (8)

and the denoised image is given by:

zi =
f(xi + ni1; Θ1) + f(xi + ni2; Θ2)

2
(9)

2.3 Regularization

In practice, ni1 and ni2 could be correlated due to aliasing related to structures,
and N may not be large enough in mini-batch training. Two regularization terms
were added beside Ln for artifacts reduction and detail preservation.

The first term was weight decay defined as:

Lw = ‖Θ1‖22 + ‖Θ2‖22 , (10)

which was effective at eliminating artifacts due to noise correlation.
The second term was image consistency:

Lr =
1

N

N∑
i=1

∥∥zi − xest
i

∥∥2
2
, (11)

where zi is given by (9) and xest
i is an estimation of xi. It could be the original

noisy images, or reconstructed with artifacts-suppressing algorithms.
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The final loss function for training was

L = Ln + βwLw + βrLr, (12)

where βw could be tuned first with βr = 0 to remove artifacts, then βr could be
tuned for image details with fixed βw. The denoised image was given by (9).

3 Experiments

3.1 Data Preparation

We validated the proposed methods on two datasets: LDCT Grand Challenge [7]
and NYU MR images [8]. Both datasets have high quality images which provided
reference for evaluation.

The LDCT dataset consisted of abdomen CT scans from 10 patients. Quarter-
dose raw data was synthesized from the acquisitions by realistic noise insertion.
The raw data was rebined to multi-slice fanbeam sinogram for image reconstruc-
tion. We randomly chose 50 slices from each patients for our study, and used
8 patients for training with the other 2 patients for testing. For each slice, we
split the 2304 quarter-dose projections to odd and even set and used filtered
backprojection (FBP) with Hann filter to reconstruct the xi + ni1 and xi + ni2

required for the training of consensus network.
The NYU MR dataset used in this study consisted of sagittal knee MR scans

with Turbo Spin Echo sequence from 20 patients. 4× catesian downsampling
was synthesized by downsampling the original kspace data with different random
masks for each slice. The central 48 lines were kept for aliasing reduction and
sensitivity map estimation. Each patients had 31 to 35 slices and we randomly
chose 16 patients for training with 4 patients for testing. For each patient, the
sampled lines were further randomly split to two sets with 8× dwonsampling
each. The central 48 lines were kept for both sets.

Zero-filling was used to reconstruct xi + ni1 and xi + ni2 due to its linear
property so that the artifacts was zero-mean. The random sampling part of the
kspace data was also amplified by a factor of 8 to enforce the zero-mean property.

3.2 Parameters

We used UNet [1][9] as f(x; Θ) in all the studies. 32 and 64 basic featuremaps
were used for LDCT and NYU MR datasets respectively. For MR study, the real
and image part of the images were fed to the network as two channels. The xest

i

in CT and MR studies were quarter-dose FBP results and SENSE [10] results
respectively. The hyperparameters, βw and βr, were tuned according to section
2.3. LDCT study used βw = 5×10−6 and βr = 0.5. MR study used βw = 1×10−6

and βr = 5.
The networks were trained on 96 × 96 local patches with mini-batch size of

40. At each epoch, 40 patches were randomly extracted from each training slice.
The networks were trained by Adam algorithm with learning rate of 10−4 for
100 epochs. CT images were normalized to HU / 1000 and MR images were
normalized to [-1, 1] before being fed to the networks.
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Full dose FBP TV

Noise2noise Proposed Noise2clean

Fig. 1. A testing CT slice processed with different methods. A small lesion is marked
with blue arrow on the full-dose image. The display window is [-160, 240] HU.

Table 1. RMSEs and SSIMs of the testing CT images. SSIMs were calculated within
the liver window [-160, 240] HU. Noise2clean required clean images for training.

Index FBP TV Noise2noise Proposed Noise2clean

RMSE(HU) 27.6 ± 5.3 36.9 ± 4.4 17.4 ± 3.2 18.4 ± 2.9 14.7 ± 2.8
SSIM 81.5 ± 4.7 81.8 ± 3.5 84.2 ± 4.6 87.1 ± 3.4 87.7 ± 3.3

4 Results

The root mean squares error (RMSE) and structural similarity index (SSIM)
on the testing quarter-dose CT dataset are given in table 1, and one of the
testing slices with two lesions is given in figure 1. Beside the proposed method,
we also gave the results from quarter-dose FBP, iterative reconstruction with
total variation (TV) minimization [3], original Noise2noise (2) and Noise2clean
(1). All the methods did not require clean images for training or testing except
for the Noise2clean, which was supervised learning.

The proposed method achieved the best SSIM among all the unsupervised
methods. Although Noise2noise had lower RMSE compared to the proposed
method, its images were significantly oversmoothed as shown in figure 1. The
higher RMSE of the proposed methods were mainly due to mismatch in noise
patterns in the reference images and the proposed results. The proposed method
preserved both the small lesion structure and textures compared to TV and
Noise2noise. The structural details recovered by the proposed method were very
similar to that by the Noise2clean training, and they achieved close SSIMs.
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Full sample Zero-filling SENSE

Noise2noise Proposed Noise2clean

Fig. 2. Amplitude images of a testing MR slice processed with different methods.
Structures are marked with blue arrows on the fully sampled image.

Table 2. RMSEs and SSIMs of the testing MR images. SSIMs were calculated for the
amplitude images. Noise2clean required clean images for training.

Index Zero-filling SENSE Noise2noise Proposed Noise2clean

RMSE(10−3) 36.3 ± 7.6 38.4 ± 4.6 27.7 ± 6.3 23.4 ± 4.2 21.0 ± 4.5
SSIM 90.1 ± 1.9 86.5 ± 1.1 94.6 ± 1.3 95.2 ± 0.6 96.4 ± 0.8

The 4× downsampling MR testing results are given in table 2 and figure 2.
Results from Zero-filling, SENSE, Noise2noise and Noise2clean are given beside
the proposed method.

In the MR study, the proposed method achieved the best RMSE and SSIM
among all the unsupervised methods. Noise2noise results were still oversmoothed.
The proposed method preserved detailed structures of the knee compared to
Noise2noise, and had significantly reduced artifacts and noise compared to zero-
filling and SENSE. Compared to Noise2clean result, the proposed method recov-
ered almost the same amount of structures despite of some slight loss in contrast.
The artifacts and noise level were also similar for the two results.

5 Conclusion and Discussion

In this paper we proposed an unsupervised learning method for medical image
denoising which only required noisy samples during training. A novel theorem
was proposed for the Noise2noise framework. Our consensus network was pro-
posed based on the theorem with novel framework and loss functions designed
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for medical imaging. The proposed loss function efficiently utilized both noise
realizations of the same object and achieved improved performance compared to
Noise2noise under the same framework. The proposed method achieved better
performance than other unsupervised methods. Its image quality was close to
that of supervised denoising networks.

The proposed method had weak assumption on the property of noise and
images. It worked for both local noise in CT and non-local undersampling ar-
tifacts in MR. The noise was only required to be zero-mean and independent
in the two realizations. Whereas zero-mean can be guaranteed with appropriate
reconstruction algorithms, the independence property could be breached due to
various factors. The artifacts caused by correlations were successfully compen-
sated with the proposed regularizations.

Although the proposed method need to split the raw data to create the train-
ing dataset, its deployment can work in image domain only. After the consensus
network was trained, another network could be trained to map noisy images to
the output of consensus network in a conventional supervised manor. Hence, the
networks’ deployment do not need to interfere existing workflow of scanners.

We achieved promising results on existing public datasets where high-quality
reference images were available, which provided reliable evaluation of the method’s
performance. The method can be applied to more challenging applications where
only noisy images are available, such as dynamic PET, ASL MR, and spectral
CT. Furthermore, the method itself could also be improved, such as replacing
the image consistency (11) with data consistency; or replacing UNet with recon-
struction networks.
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