Skip to main content

Consistent Brain Ageing Synthesis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

Brain ageing is associated with morphological changes and cognitive degeneration, and can be affected by neurodegenerative diseases which can accelerate the ageing process. The ability to separate accelerated from healthy ageing is useful from a diagnostic perspective and towards developing subject-specific models of progression. In this paper we start with the ‘simpler’ problem of synthesising age-progressed 2D slices. We adopt adversarial training to learn the joint distribution of brain images and ages, and simulate aged images by a network conditioned on age (a continuous variable) encoded as an ordinal embedding vector. We introduce a loss to help preserve subject identity despite that we train with cross-sectional (unpaired) data. To evaluate the quality of aged images, a pre-trained age predictor is used to estimate an apparent age. We show qualitatively and quantitatively that our method can progressively synthesise realistic brain images of different target ages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumgartner, C.F., Koch, L.M., Can Tezcan, K., Xi Ang, J., Konukoglu, E.: Visual feature attribution using wasserstein GANs. In: CVPR, pp. 8309–8319 (2018)

    Google Scholar 

  2. Bowles, C., Gunn, R., Hammers, A., Rueckert, D.: Modelling the progression of Alzheimer’s disease in MRI using generative adversarial networks. In: Medical Imaging 2018: Image Processing. International Society for Optics and Photonics (2018)

    Google Scholar 

  3. Chartsias, A., Joyce, T., Dharmakumar, R., Tsaftaris, S.A.: Adversarial image synthesis for unpaired multi-modal cardiac data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 3–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_1

    Chapter  Google Scholar 

  4. Cole, J.H., Franke, K.: Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40(12), 681–690 (2017)

    Article  Google Scholar 

  5. Cole, J.H., et al.: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage 163, 115–124 (2017)

    Article  Google Scholar 

  6. Cole, J.H., et al.: Brain age predicts mortality. Mol. Psychiatry (2017)

    Google Scholar 

  7. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. Int. J. Comput. Vis. 90(2), 255–266 (2010)

    Article  Google Scholar 

  8. Franke, K., Gaser, C.: Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s disease. GeroPsych J. Gerontopsychology Geriatr. Psychiatry 25(4), 235 (2012)

    Google Scholar 

  9. Goyal, M.S., et al.: Persistent metabolic youth in the aging female brain. PNAS 116(8), 3251–3255 (2019)

    Article  Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: NIPS, pp. 5767–5777 (2017)

    Google Scholar 

  11. Gutiérrez, P.A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F., Hervas-Martinez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2016)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  13. Huizinga, W., et al.: A spatio-temporal reference model of the aging brain. NeuroImage 169, 11–22 (2018)

    Article  Google Scholar 

  14. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  15. Petersen, R.C., et al.: Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology 74(3), 201–209 (2010)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  18. Singh-Manoux, A., et al.: Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ 344, d7622 (2012)

    Article  Google Scholar 

  19. Taylor, J.R., et al.: The Cambridge centre for ageing and neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. NeuroImage 144, 262–269 (2017)

    Google Scholar 

  20. Woolrich, M.W., et al.: Bayesian analysis of neuroimaging data in FSL. Neuroimage 45(1), S173–S186 (2009)

    Article  MathSciNet  Google Scholar 

  21. Xia, T., Chartsias, A., Tsaftaris, S.A.: Adversarial pseudo healthy synthesis needs pathology factorization. In: International Conference on Medical Imaging with Deep Learning (2019)

    Google Scholar 

  22. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: CVPR (2017)

    Google Scholar 

  23. Ziegler, G., Dahnke, R., Gaser, C.: Models of the aging brain structure and individual decline. Front. Neuroinf. 6, 3 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Edinburgh by a PhD studentship. This work was partially supported by EPSRC (EP/P022928/1) and by The Alan Turing Institute under the EPSRC grant EP/N510129/1. This work was supported in part by the US National Institutes of Health (R01HL136578). We also thank Nvidia for donating a Titan-X GPU. S.A. Tsaftaris acknowledges the support of the Royal Academy of Engineering and the Research Chairs and Senior Research Fellowships scheme.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Tian Xia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14283 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, T., Chartsias, A., Tsaftaris, S.A., for the Alzheimer’s Disease Neuroimaging Initiative. (2019). Consistent Brain Ageing Synthesis. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11767. Springer, Cham. https://doi.org/10.1007/978-3-030-32251-9_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32251-9_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32250-2

  • Online ISBN: 978-3-030-32251-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics