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Abstract. Identifying structures in nonstandard fetal ultrasound planes
is a significant challenge, even for human experts, due to high variabil-
ity of the anatomies in terms of their appearance, scale and position
but important for image interpretation and navigation. In this work,
our contribution is three-fold: (i) we model local temporal dynamics of
video clips, by applying convolutional LSTMs on the intermediate CNN
layers, which learns to detect fetal structures at various scales; (ii) we
proposed an attention-gated LSTM, which generates spatio-temporal at-
tention maps showing the intermediate process of structure localisation;
and (iii) our approach is end-to-end trainable, and the localisation is
achieved in a weakly supervised fashion i.e. with only image-level labels
available during training. The proposed attention-mechanism is found to
improve the detection performance substantially in terms of classification
precision and localisation correctness.
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1 Introduction

Fetal ultrasound screening requires highly experienced sonographers. This makes
it difficult for a wider adoption of clinical ultrasound for pregnancy care, es-
pecially in low-and-middle-income settings, where there is a substantial lack
of experienced sonographers. Therefore, automated scan plane detection algo-
rithms would greatly assist non-expert examination. However, most published
algorithms to date only consider detection of standard scan planes, and treat
non-standard scan planes as background. Towards more general recognition and
navigation, it is necessary to automate the detection and interpretation of con-
tents in non-standard fetal planes. In this work, we present an automated fine-
detection system that not only recognizes the standard scan planes but also
non-standard planes. This is a more challenging problem due to the need to
accommodate greater variations in imaging quality, and high variability of fetal
structures in terms of scale, appearance and location.
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Fig. 1: Class-specific features learned at different layers of a ConvNet. Left-Right:
last frame in a sequence, Conv1, Conv2, Conv3, Conv4, Conv5 layers. S: Skull,
A: Abdomen, H: Heart, B: Background.

Contributions: In this paper, we introduce a novel attention-gated spatio-
temporal neural network (as depicted in Fig.2), trained in a weakly supervised
fashion, for detection of key fetal structures of interest (skull, abdomen and
heart) in consecutive frames. (1) We apply convolutional LSTMs [1] not solely
on the top layer but also on the intermediate features of a convolutional neural
network (CNN), to characterise temporal dynamics of features extracted at dif-
ferent scales (as illustrated in Fig.1). (2) We extend the convolutional LSTMs
to be attention-gated, regularised by a doubly stochastic mechanism [2] that
encourages to fully exploit spatial-temporal information, and more importantly,
provides visual evidence of structures localisation. (3) Finally, we investigate the
effect of global pooling (average and max) on class activation mapping.

Related Works: Recently, deep learning has become popular for analysing 2D
fetal ultrasound sweeps. [3] and [4] have exhibited state-of-the-art performance
in still image tasks such as classification or detection. However, such models
discard temporal information that for human interpretation we know provides
important cues in videos. This is a particularly significant problem for detecting
cardiac views. Several recent works [5], [6] and [7] have taken temporal context
into account for fetal structure recognition. Chen et al. [5] proposes a recurrent
network for detection of standard fetal ultrasound planes, in which they apply
LSTMs built on whole image features that completely discard spatial correspon-
dence between frames. Gao et al. [6] proposed a two stream ConvNet, learn-
ing spatio-temporal representations to detect the fetal heartbeat in ultrasound
videos, which demonstrated a substantial improvement in correctly identifying
heart frames. A closely related work to ours is Huang et al. [7] that incorporates
a convolutional recurrent layer working at a local region level of the frames.
However, and in contrast to our work, the recurrent design is only applied on
the coarsest feature map extracted from the CNN. We argue that this design
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is more likely to focus on global appearance changes and is not well-suited to
capture fine local details, which is nontrivial in our case. In addition, Schlemper
et al. [8] proposed a soft attention gated network for improving ultrasound scan
plane detection, which is actually an improved SonoNet [5]. However, our work
is different in two distinct ways: firstly we propose a general detection frame-
work, not only detecting different anatomies in standard scan planes but also
non-standard ones, whilst [5] and [8] only detect standard scan planes and treat
non-standard planes as background. Secondly, [8] focuses on aggregating spatial
features with spatial attention which did not explore temporal variations and
aggregation.

2 Methodology
We present the architecture of our proposed model in Fig.2. Overall, the model
consists of a CNN for extracting appearance features from consecutive frames
and an Attention Gated LSTM for processing the CNN features recurrently
at different locations, exploring temporal variation by selectively attending to
different regions of the spatial features maps at different levels.

Video Subsamples

CNN

Conv Features

CNN

Frame 1 Frame 2 Frame T

Attention Gated LSTM

i,j

Recurrent Module

Attention Module

Fig. 2: Network Overview. CNN feature maps are fed to the Attention Mod-
ule to generate an attention map at each time step, then the attention-warped
(element-wise product) feature maps are fed to the Recurrent Module to up-
date the hidden states.

CNN Architecture: Inspired by a VGG very deep architecture [9], we adopt
the configuration that increases CNN depth using very small convolution fil-
ters stacked with non-linearity injected in between. All convolution layers con-
sist of 3×3 kernels, batch normalization and Rectified Linear Units. The full
architecture, using shorthand notation, is 2×C (32,3,1)-MP -2× C (64,3,1)-MP -
3×C (128,3,1)-MP -3×C (256,3,1)-MP -3×C (256,3,1)-MP, where C(d,f,s) indicates
a convolution layer with d filters of spatial size f×f, applied to the input with
stride s. MP represents non-overlapping max-pooling operation with a kernel
size of 2×2.
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Attention Gated LSTM: The Attention Gated LSTM consists of an attention
module and a convolutional LSTM, which are illustrated in Fig.2 showing their
inner structure. The max pooled convolutional maps (X l

t, ..., X
L−1
t , XL

t )(t=1...T ),
extracted form L layers (L=5 in our CNN) at different time steps in a video,
are composed of patterns with strong local correlation over time, and temporal
vitiations (e.g. heart beating) tend to be smooth and restricted in a local spa-
tial neighbourhood in successive frames. Therefore, we embed such a prior in
our model by replacing the fully connected LSTM gates (i.e. input gates, for-
get gates etc) with convolution operations. The convolutional kernels (3×3) are
chosen to be significantly smaller than the intermediate convolutional map size
for computational efficiency.

As noted in Fig.2, instead of directly applying the convolutional maps to the
LSTMs, we introduce a soft attention mechanism, conditioned on the convolu-
tional maps X l

t and their latest hidden state H l
t−1, which learns to focus on

salient regions over time:

attlt = W l ∗ tanh(W l
a ∗X l

t + U l
a ∗H l

t−1 + ba) (1)

where again the gating units are characterised by a set of small 2D-convolution
kernels: W l

a ε R3×3×Ox×Oh , U l
a ε R3×3×Oh×Oh , W l ε R3×3×Oh×1 and bias term

ba ε ROh . tanh is non-linearity activation function. The output of this operations
is a 2D map from which a normalised attention map is computed through the
equation:

Al
t(i, j) = p(attij |X l

t, H
l
t−1) =

σ(attlt(i, j))∑
i

∑
j σ(attlt(i, j))

(2)

where Al
t(i, j) is the element of the attention map in position (i, j), sigma is a

sigmoid unit. The attention mechanism learns to adaptively guide the LSTMs
focusing on the salient(high variant) regions over time and produce the sparse
hidden representation X̃ l

t feeding into the LSTMs, by applying the attention
map to the input Conv map with an element-wise product between each channel
of the feature maps and the attention map.

Weakly Supervised Localisation: We feed the hidden states of the last time
step i.e. H l

T into the weakly supervised classification layers, which is built with
two approaches: (1) 1×1 convolution is applied to mapping the feature maps
down to the class score maps, and the score maps are then spatially aggregated
using either a Global Max Pooling (GMP) or Global Average Pooling (GAP)
operation to obtain categorical scores; (2) We aggregate the feature maps to a
feature vector first with global pooling operation, then a dense layer is applied
to mapping the feature vector to categorical scores. We then train the proposed
model end-to-end by minimizing the objective function:

L = − 1

N

N∑
n=1

αnfn(Sc(xn)− log
K∑

k=1

eSk(Xn)) + λ
∑
i,j

(1−
T∑

t=1

At(i, j)) (3)

where the first part of L is a focal cross-entropy loss [10]: there are N training
sequences xn and K training classes (K=4), Sk is the kth component in the score
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vector εRK , and c is the true class of xn; αn is a class-balanced weighting factor
set by inverse class frequency; fn is a focal modulating factor to reduce the loss
contribution from well-trained examples and thus focus training on misclassified
examples. The second part is a form of doubly stochastic regularization [2] to
regularize the learning of spatial-temporal attention. By construction in Eqn.(2),
we have

∑
i,j At(i, j) = 1. We also encourage

∑
tAt(i, j) ≈ 1 by the doubly

stochastic regularization, which can be interpreted as encouraging the model to
pay equal attention to every frame and every part of the frame over the course
of generation.

3 Experiments and Results
In this section, we evaluate the proposed model jointly for classification and
localisation of the fetal structures of interest (skull, abdomen and heart) in
video sequences. We compare different weakly supervised classifiers discussed
above: AD-GAP (Adaptation with Global Average Pooling), AD-GMP, CAM-
GAP and CAM-GMP (Class Activation Mapping with Global Max Pooling).
And we also compare against their attention-gated versions: AG-AD-GAP (AG:
attention gated), AG-AD-GMP, AG-CAM-GAP and AG-CAM-GMP.

Datasets: Our dataset consisted of 456 fetal ultrasound videos of healthy vol-
unteers, with gestational ages 28 weeks or higher, which have been acquired by a
number of experienced obstetricians following a simple protocol i.e. sweeping the
ultrasound probe from the maternal cervix to the fundus along the longitudinal
axis of the uterus. The videos have been annotated at the frame level by extract-
ing the sequences that contain the anatomy of interest i.e. Skull, Abdomen,
Heart and Background. The annotation takes both standardised and non-
standardised planes into account, and there are significantly more non-standard
frames than standard ones because of the simple acquisition protocol. The an-
notated sequences were sub-sampled with steps conditioned on their length, to
create sequences consisting of five consecutive frames. A 5-fold cross-validation
is prepared that each fold keeps roughly 20% of the sub-samples for valida-
tion and test, the remaining are used for training. The split is made according
to the subjects identity to ensure that no samples originating from validation
and test subjects were used for training. To evaluate localization, we also anno-
tate bounding-boxes of the fetal structures on the test data. We applied several
random on-the-fly data augmentation strategies during training, including (1)
cropping square patches at the center of the input frames with a scaling factor
randomly chosen between 0.7 to 1, and resize the crops to the size of 224×224
(input resolution); (2) rotation with an angle randomly selected within θ = −25◦

to 25◦; (3) Random horizontal reflection i.e. flipped the frames in the left-right
direction with a probability p=0.5.

Implementation Details: We apply 5 recurrent modules independently on
each of the convolution maps extracted from the first to fifth MP (max-pooling)
layers. The number of channels of each respective hidden representations are
32, 64, 128, 256 and 256. Five hidden-representations are obtained at each time
step. We feed the hidden representations of the last time-step to 5 separate clas-
sifiers. Each classifier therefore learns prediction by focusing on only one hidden
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representation at a specific scale. The classifier outputs are then averaged to get
the final decision. All models are implemented with Tensorflow and trained from
scratch (on a Nvidia GeForce GTX 1080Ti) with an Adam optimizer (learn-
ing rate: 10−4, β1=0.5, β2=0.9 and ε = 10−8). λ in Eqn.(3) is set to 1 in our
experiments.

AD-GAP CAM-GAP AD-GMP CAM-GMP AD-GAP CAM-GAP AD-GMP CAM-GMP

Fig. 3: Examples of the class activation maps obtained from AD-GAP, AD-GMP,
CAM-GAP and CAM-GMP. The class activation maps are from Conv5 layer. S:
Skull, A: Abdomen, H: Heart.

Class Activation Mapping: Examples of high level (Conv5 layer) class ac-
tivation maps are illustrated in Fig.3 for different models and different fetal
structures. We find that Global Max Pooling (GMP) models, particularly the
AD-GMP generates the most discriminative CAMs, localising well the target
fetal structures, even in the challenging heart examples with strong acoustic
shadow and highly varied appearance and location. While Global Average Pool-
ing (GAP) models perform less superior, the AD-GAP very often failed to cap-
ture the anatomy of interest in most cases, and although CAM-GAP localise well
the target structures but it tends to over-estimate its extent. We argue that this
is because, averaging a feature map is prone to incorporate the global context
for the classification, while GMP only accounts for the receptive field of the most
discriminative unit i.e. maximally activated neuron.

Attention Analysis: Fig.4 gives examples of spatial-temporal attention cap-
tured by the AG-CAM-GMP model at different feature levels. We found that the
Conv3 layer captures a rich diversity of temporal dynamics of small anatomies,
for instance, the appearing and disappearing of umbilical veins, and the periodic
up-down movement of atrioventricular valves. A very interesting heart example
(last column), the neural network is struggling to find where the heart is at the
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beginning but it is progressively corrected towards end of the video. Likewise, the
attention is fairly random initially at Conv4, and because of the extremely large
receptive field, Conv5 begin with paying attention on the whole frame, then with
incorporation of contextual information, it learns to smoothly and progressively
move to the structures of interest, and finally locate them. It should be noted
that Conv4 finally focuses more on the anatomies inside the abdomen, such as
the heart, stomach bubble and umbilical vein, and Conv5 tends to focus on the
whole fetal abdomen.

Fig. 4: Examples of multi-scale attention obtained from AG-CAM-GMP. Row
1: examples videos. Row 2 to 4: attention maps at Conv3 to Conv5 levels,
respectively. Best viewed in Adobe Reader. All videos should play automatically.

Evaluation Localization: We generate a bounding box and its associated
anatomy of interest from the class activation maps. We blur Conv4 and Conv5
maps and threshold the lower activations, and then perform a connected com-
ponent analysis to find the overlapped component, finally we fit a bounding box
to the largest connected component. We jointly evaluate the classification and
localisation with average precision (AP). We count a correct detection (true pos-
itive) if the IOU is above 50% of the maximum achievable IOU of its associated
class, and it is a positive prediction with confidence above certain thresholds
(ranging from 0.1 to 0.9). Fig.5(b) compares the categorical AP of the baseline
models, in which we find the skull and abdomen category achieve comparable
performance in each model, and slightly outperform the heart category. The
CAM-GMP model achieves the best AP of 0.94, 0.93 and 0.85 (median) in the
category of skull, abdomen and heart, respectively. In figure 5(c), we find that
attention helps to improve the localisation performance of the baseline models.
Particularly, there is a substantial improvement of the mAP (more than 10%)
in the GAP models i.e. AD-GAP and CAM-GAP. Although CAMs model al-
ready perform very well but there is still a moderate increase of mAP after
incorporating attention into the models.
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(a) Mean IOU (b) Average Precision (c) Mean Average Precision

Fig. 5: Quantitative evaluation of localisation performance.

Model Complexity: We have conducted computation complexity studies by
considering two metrics: 1) the number of floating-point operations (FLOPs);
2) frame rate (speed) on a single GPU (FPS). FLOPs consist of convolution
operations in the backbone (CNN) which is about 3.82 GFLOPs; Recurrent and
attention modules is about 1.16GFLOPs and 0.29GFLOPs (here we only con-
sider Conv4 and Conv5 at inference time, as we use conv4 and conv5 CAMs for
the localization task); classifiers take a fractional computation that can be ne-
glected compared to the above modules. So in total the proposed baseline model
computation is about 4.98 GFLOPs (attention gated models slightly higher at
5.27GFLOPs) that is about one third the computation complexity of VGG16
[9](15.3GFLOPs), and is comparable to SonoNet-32[4]. We also measured the
frame rates achieved on a Nvidia Geforce GTX 1080 GPU for classification and
localisation combined that base-line models achieve approx. 43.2 FPS, attention-
gated models are slightly slower approx. 37.5 FPS. Videos in our study were
recorded at 30 FPS so all experimented models achieve real-time performance.

4 Conclusion
We have presented a general framework for detection of multiple fetal struc-
tures in free-hand ultrasound videos that it not only learns objects detection
from the standardised scan planes but also dominantly from the non-standard
cases (especially the abdominal and cardiac planes). Particularly, we proposed a
spatial-temporal attention module that can be plug-in any feature level of a Con-
vNet. As result of multi-scale learning, we have demonstrated the model learns a
rich diversity of spatial-temporal patterns at different Conv layers. We also found
that the attention helps to improve the localisation performance significantly.
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PULSE) the EPSRC (EP/GO36861/1, EP/MO13774/1) the CSC (DPhil Schol-
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