Skip to main content

Generative Adversarial Irregularity Detection in Mammography Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11843))

Abstract

This paper presents a novel method for detection of irregular tissues in mammography images. Previous works solved such irregularity detection tasks with binary classifiers. Here, we propose to detect irregularities by only observing the healthy samples and describe anything largely different from them as irregularity (i.e., unhealthy or cancerous tissues in terms of demographic breast images). This is particularly of great interest as it is very complicated to acquire datasets with all types of cancer cell shapes and tissues for building binary classifiers. Our modeling allows for learning an irregularity detector without any supervising signal from the irregular class. To this end, we propose an architecture with two deep convolutional networks (\(\mathbf {R}\) and \(\mathbf {M}\)) that are trained adversarially. \(\mathbf {R}\) learns to Reconstruct regular mammography images by only observing healthy tissues and \(\mathbf {M}\) (a Matching network) to detect if its input is healthy or not. The experimental results confirm the reliability and superior performance of our methods for detecting cancer tissues in mammography images in comparison with state-of-the-art irregularity detection methods. The code is available at https://github.com/milad-ahmadi/GAID.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. arXiv preprint arXiv:1805.06725 (2018)

  2. Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Programs Biomed. 127, 248–257 (2016)

    Article  Google Scholar 

  3. Fayyaz, M., Saffar, M.H., Sabokrou, M., Fathy, M., Huang, F., Klette, R.: STFCN: spatio-temporal fully convolutional neural network for semantic segmentation of street scenes. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10116, pp. 493–509. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54407-6_33

    Chapter  Google Scholar 

  4. Fisher, R.A.: The logic of inductive inference. J. Roy. Stat. Soc. 98(1), 39–82 (1935)

    Article  MathSciNet  Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  6. Gubern-Mérida, A., et al.: Automated localization of breast cancer in DCE-MRI. Med. Image Anal. 20(1), 265–274 (2015)

    Article  Google Scholar 

  7. Huynh, B.Q., Li, H., Giger, M.L.: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging 3(3), 034501 (2016)

    Article  Google Scholar 

  8. Jafari, S.H., et al.: Breast cancer diagnosis: Imaging techniques and biochemical markers. J. Cell. Physiol. 233(7), 5200–5213 (2018)

    Article  Google Scholar 

  9. Jamieson, A.R., Drukker, K., Giger, M.L.: Breast image feature learning with adaptive deconvolutional networks. In: Medical Imaging 2012: Computer-Aided Diagnosis, vol. 8315, p. 831506. International Society for Optics and Photonics (2012)

    Google Scholar 

  10. Jiao, Z., Gao, X., Wang, Y., Li, J.: A deep feature based framework for breast masses classification. Neurocomputing 197, 221–231 (2016)

    Article  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4, 170177 (2017)

    Article  Google Scholar 

  13. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)

    Article  Google Scholar 

  14. Petrick, N., Chan, H.P., Sahiner, B., Wei, D.: An adaptive density-weighted contrast enhancement filter for mammographic breast mass detection. IEEE-TMI 15(1), 59–67 (1996)

    Google Scholar 

  15. Sabokrou, M., Fathy, M., Hoseini, M.: Video anomaly detection and localisation based on the sparsity and reconstruction error of auto-encoder. Electron. Lett. 52(13), 1122–1124 (2016)

    Article  Google Scholar 

  16. Sabokrou, M., Fayyaz, M., Fathy, M., Klette, R.: Deep-cascade: cascading 3D deep neural networks for fast anomaly detection and localization in crowded scenes. IEEE Trans. Image Process. 26(4), 1992–2004 (2017)

    Article  MathSciNet  Google Scholar 

  17. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3379–3388 (2018)

    Google Scholar 

  18. Sabokrou, M., et al.: AVID: adversarial visual irregularity detection. arXiv preprint arXiv:1805.09521 (2018)

  19. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  20. Stewart, B., Wild, C.P., et al.: World cancer report 2014. Self (2018)

    Google Scholar 

  21. Suckling, J., et al.: Mammographic image analysis society (MIAS) database v1.21 [dataset] (2015). https://www.repository.cam.ac.uk/handle/1810/250394

  22. Sun, W., Tseng, T.L.B., Zhang, J., Qian, W.: Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput. Med. Imaging Graph. 57, 4–9 (2017)

    Article  Google Scholar 

  23. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  24. Wang, L., Guo, S., Huang, W., Qiao, Y.: Places205-VGGNet models for scene recognition. arXiv preprint arXiv:1508.01667 (2015)

  25. Weissleder, R.: Molecular imaging in cancer. Science 312(5777), 1168–1171 (2006)

    Article  Google Scholar 

  26. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, pp. 341–349 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sabokrou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmadi, M., Sabokrou, M., Fathy, M., Berangi, R., Adeli, E. (2019). Generative Adversarial Irregularity Detection in Mammography Images. In: Rekik, I., Adeli, E., Park, S. (eds) Predictive Intelligence in Medicine. PRIME 2019. Lecture Notes in Computer Science(), vol 11843. Springer, Cham. https://doi.org/10.1007/978-3-030-32281-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32281-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32280-9

  • Online ISBN: 978-3-030-32281-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics