
Language Inclusion Algorithms
as Complete Abstract Interpretations

Pierre Ganty1[0000−0002−3625−6003], Francesco Ranzato2[0000−0003−0159−0068],
and Pedro Valero1,3[0000−0001−7531−6374]

1 IMDEA Software Institute, Spain
{pierre.ganty,pedro.valero}@imdea.org

2 Dipartimento di Matematica, University of Padova, Italy
francesco.ranzato@unipd.it

3 Universidad Politécnica de Madrid, Spain

Abstract. We study the language inclusion problem L1 ⊆ L2 where
L1 is regular. Our approach relies on abstract interpretation and checks
whether an overapproximating abstraction of L1, obtained by succes-
sively overapproximating the Kleene iterates of its least fixpoint charac-
terization, is included in L2. We show that a language inclusion problem
is decidable whenever this overapproximating abstraction satisfies a com-
pleteness condition (i.e. its loss of precision causes no false alarm) and
prevents infinite ascending chains (i.e. it guarantees termination of least
fixpoint computations). Such overapproximating abstraction function on
languages can be defined using quasiorder relations on words where the
abstraction gives the language of all words “greater than or equal to” a
given input word for that quasiorder. We put forward a range of qua-
siorders that allow us to systematically design decision procedures for
different language inclusion problems such as regular languages into reg-
ular languages or into trace sets of one-counter nets. In the case of inclu-
sion between regular languages, some of the induced inclusion checking
procedures correspond to well-known state-of-the-art algorithms like the
so-called antichain algorithms. Finally, we provide an equivalent greatest
fixpoint language inclusion check which relies on quotients of languages
and, to the best of our knowledge, was not previously known.

1 Introduction

Language inclusion is a fundamental and classical problem which consists in
deciding, given two languages L1 and L2, whether L1 ⊆ L2 holds. We consider
languages of finite words over a finite alphabet Σ.

The basic idea of our approach for solving a language inclusion problem
L1 ⊆ L2 is to leverage Cousot and Cousot’s abstract interpretation [6,7] for
checking the inclusion of an overapproximation (i.e. a superset) of L1 into L2.
This idea draws inspiration from the work of Hofmann and Chen [18], who used
abstract interpretation to decide language inclusion between languages of infinite
words.

2 P. Ganty, F. Ranzato and P. Valero.

Assuming that L1 is specified as least fixpoint of an equation system on
℘(Σ∗), an approximation of L1 is obtained by applying an overapproximating
abstraction function for sets of words ρ : ℘(Σ∗) → ℘(Σ∗) at each step of the
Kleene iterates converging to the least fixpoint. This ρ is an upper closure opera-
tor which is used in standard abstract interpretation for approximating an input
language by adding words (possibly none) to it. This abstract interpretation-
based approach provides an abstract inclusion check ρ(L1) ⊆ L2 which is always
sound by construction. We then give conditions on ρ which ensure a complete
abstract inclusion check, namely, the answer to ρ(L1) ⊆ L2 is always exact (no
“false alarms” in abstract interpretation terminology): (i) ρ(L2) = L2; (ii) ρ
is a complete abstraction for symbol concatenation λX ∈ ℘(Σ∗). aX, for all
a ∈ Σ, according to the standard notion of completeness in abstract interpre-
tation [6,16,23]. This approach leads us to design in Section 4 an algorithmic
framework for language inclusion problems which is parameterized by an under-
lying language abstraction (cf. Theorem 4.5).

We then focus on overapproximating abstractions ρ which are induced by a
quasiorder relation 6 on words in Σ∗. Here, a language L is overapproximated
by adding all the words which are “greater than or equal to” some word of L
for 6. This allows us to instantiate the above conditions (i) and (ii) for having
a complete abstract inclusion check in terms of the quasiorder 6. Termination,
which corresponds to having finitely many Kleene iterates in the fixpoint com-
putations, is guaranteed by requiring that the relation 6 is a well-quasiorder.

We define quasiorders satisfying the above conditions which are directly de-
rived from the standard Nerode equivalence relations on words. These qua-
siorders have been first investigated by Ehrenfeucht et al. [11] and have been
later generalized and extended by de Luca and Varricchio [8,9]. In particular,
drawing from a result by de Luca and Varricchio [8], we show that the language
abstractions induced by the Nerode quasiorders are the most general ones which
fit in our algorithmic framework for checking language inclusion. While these
quasiorder abstractions do not depend on some language representation (e.g.,
some class of automata), we provide quasiorders which instead exploit an un-
derlying language representation given by a finite automaton. In particular, by
selecting suitable well-quasiorders for the class of language inclusion problems at
hand we are able to systematically derive decision procedures for the inclusion
problem L1 ⊆ L2 when: (i) both L1 and L2 are regular and (ii) L1 is regular
and L2 is the trace language of a one-counter net.

These decision procedures that we systematically derive here by instanti-
ating our framework are then related to existing language inclusion checking
algorithms. We study in detail the case where both languages L1 and L2 are
regular and represented by finite state automata. When our decision procedure
for L1 ⊆ L2 is derived from a well-quasiorder on Σ∗ by exploiting the automaton-
based representation of L2, it turns out that we obtain the well-known antichain
algorithm by De Wulf et al. [10]. Also, by including a simulation relation in the
definition of the well-quasiorder we derive a decision procedure that partially
matches the inclusion algorithm by Abdulla et al. [2], hence also that by Bonchi

Language Inclusion Algorithms as Complete Abstract Interpretations 3

and Pous [4]. For the case in which L1 is regular and L2 is the set of traces
of a one-counter net we derive an alternative proof for the decidability of the
language inclusion problem [19].

Finally, we leverage a standard duality result in abstract fixpoint checking [5]
and put forward a greatest fixpoint approach (instead of the above least fixpoint-
based procedure) for the case where both L1 and L2 are regular languages. In this
case, we exploit the properties of the overapproximating abstraction induced by
the quasiorder in order to show that the Kleene iterates of this greatest fixpoint
computation are finitely many. Interestingly, the Kleene iterates of the greatest
fixpoint are finitely many whether you apply the overapproximating abstraction
or not, which we show relying on forward complete abstract interpretations [15].
An extended version of this paper is available on-line [14].

2 Background

Order Theory Basics. If X is a subset of some universe set U then Xc denotes
the complement of X with respect to U , and U is implicitly given by the context.
〈D,6〉 is a quasiordered set (qoset) when 6 is a quasiorder relation on D, i.e.

a reflexive and transitive binary relation. A qoset satisfies the ascending (resp.
descending) chain condition (ACC, resp. DCC) if there is no countably infinite
sequence of distinct elements {xi}i∈N such that, for all i ∈ N, xi 6 xi+1 (resp.
xi+1 6 xi). A qoset is called ACC (DCC) when it satisfies the ACC (DCC).

A qoset 〈D,6〉 is a partially ordered set (poset) when 6 is antisymmetric.
A subset of a poset is directed if it is nonempty and every pair of elements has
an upper bound in it. A poset 〈D,6〉 is a directed-complete partial order (CPO)
if it has the least upper bound (lub) of all its directed subsets. A poset is a
join-semilattice if it has the lub of all its nonempty finite subsets (so that binary
lubs are enough). A poset is a complete lattice if it has the lub of all its arbitrary
(possibly empty) subsets (so that it also has the greatest lower bound (glb) of
all its arbitrary subsets).

A qoset 〈D,6〉 is a well-quasiordered set (wqoset) when for every countably
infinite sequence of elements {xi}i∈N there exist i, j ∈ N such that i < j and
xi 6 xj . For every qoset 〈D,6〉 with X,Y ⊆ D, we define the following relation:

X v Y 4⇐⇒ ∀x ∈ X,∃y ∈ Y, y 6 x .

A minor of a subset X ⊆ D, denoted by bXc, is a subset of minimal elements
of X w.r.t. 6, i.e. bXc , {x ∈ X | ∀y ∈ X, y 6 x implies y = x}. The minor of
X satisfies the following properties: (i) X v bXc and (ii) bXc is an antichain,
that is, x1 6 x2 for no distinct x1, x2 ∈ bXc. Let us recall that every subset of a
wqoset 〈D,6〉 has at least one minor set, all minor sets are finite and if 〈D,6〉
is additionally a poset then there exists exactly one minor set. We denote the
set of antichains of a qoset 〈D,6〉 by AC〈D,6〉 , {X ⊆ D | X is an antichain}.
It turns out that 〈AC〈D,6〉,v〉 is a qoset, it is ACC if 〈D,6〉 is a wqoset and it
is a poset if 〈D,6〉 is a poset.

4 P. Ganty, F. Ranzato and P. Valero.

Kleene Iterates. Let 〈X,6〉 be a qoset, f : X → X be a function and b ∈ X.
Then, the trace of values of the variable x ∈ X computed by the following
iterative procedure:

Kleene(f, b) ,

x := b;
while f(x) 6= x do x := f(x);
return x;

provides the possibly infinite sequence of so-called Kleene iterates of the function
f starting from the basis b. When 〈X,6〉 is a ACC (resp. DCC) CPO, b 6 f(b)
(resp. f(b) 6 b) and f is monotonic then Kleene(f, b) terminates and returns
the least (resp. greatest) fixpoint of the function f which is greater (resp. less)
than or equal to b.

Let us also recall that given a monotonic function f : C → C on a complete
lattice C, its least and greatest fixpoints always exist, and we denote them, resp.,
by lfp(f) and gfp(f).

For the sake of clarity, we overload the notation and use the same symbol for
an operator/relation and its componentwise (i.e. pointwise) extension on product

domains. A vector
#»

Y in some product domain D|S| might be also denoted by
〈Yi〉i∈S and

#»

Y q denotes its component Yq.

Language Theory Basics. Let Σ be an alphabet (that is, a finite nonempty
set of symbols). Words are finite sequences of symbols where ε denote the empty
sequence. Languages are sets of words where Σ∗ is the set of all words. Concate-
nation in Σ∗ is simply denoted by juxtaposition, both for concatenating words
uv, languages L1L2 and words with languages such as uLv. We sometimes use
the symbol · to refer explicitly to the concatenation operation.

A finite automaton (FA) is a tuple A = 〈Q, δ, I, F,Σ〉 where Σ is the alphabet,
Q is the finite set of states, I ⊆ Q are the initial states, F ⊆ Q are the final
states, and δ : Q×Σ → ℘(Q) is the transition relation. If u ∈ Σ∗ and q, q′ ∈ Q
then q

u
 q′ means that the state q′ is reachable from q by following the string

u. Therefore, q
ε
 q′ holds iff q = q′. The language generated by a FA A is

L(A) , {u ∈ Σ∗ | ∃qi ∈ I, ∃qf ∈ F, qi
u
 qf}. Fig. 1 depicts an example of FA.

3 Inclusion Check by Complete Abstractions

The language inclusion problem consists in checking whether L1 ⊆ L2 holds
where L1 and L2 are two languages over an alphabet Σ. In this section, we show
how (backward) complete abstractions ρ can be used to compute an overapprox-
imation ρ(L1) of L1 such that ρ(L1) ⊆ L2 ⇔ L1 ⊆ L2.

Let uco(C) denote the set of upper closure operators (or simply closure op-
erators) on a poset 〈C,≤C〉, that is, the set of monotonic, idempotent (i.e.,
ρ(x) = ρ(ρ(x))) and increasing (i.e., x ≤C ρ(x)) functions in C → C. We often
write c ∈ ρ(C) (or simply c ∈ ρ when C is clear from the context) to denote

Language Inclusion Algorithms as Complete Abstract Interpretations 5

that there exists c′ ∈ C with c = ρ(c′), and let us recall that this happens iff
ρ(c) = c.

Closure-based abstract interpretation [7] can be applied to solve a generic
inclusion checking problem stated through least fixpoints as follows. Let ρ ∈
uco(C) and c2 ∈ C such that c2 ∈ ρ. Then, for all c1 ∈ C, it turns out that

c1 ≤C c2 ⇔ ρ(c1) ≤C ρ(c2)⇔ ρ(c1) ≤C c2 . (1)

We apply here the notion of backward completeness in abstract interpreta-
tion [6,7,16,23]. In abstract interpretation, a closure operator ρ ∈ uco(C) on
a concrete domain C plays the role of abstraction function for objects of C.
A closure ρ ∈ uco(C) is called backward complete for a concrete monotonic
function f : C → C when ρf = ρfρ holds. The intuition is that backward com-
pleteness models an ideal situation where no loss of precision is accumulated in
the computations of ρf when its concrete input objects are approximated by ρ.
It is well-known [7] that in this case backward completeness implies completeness
of least fixpoints, namely, ρ(lfp(f)) = lfp(ρf) = lfp(ρfρ) holds by assuming that
these least fixpoints exist (this is the case, e.g., when C is a CPO). Theorem 3.1
states that in order to check an inclusion c1 ≤C c2 for some c1 = lfp(f) and
c2 ∈ ρ, it is enough to perform an inclusion check lfp(ρf) ≤C c2 which is defined
on the abstraction ρ(C).

Theorem 3.1. If C is a CPO, f : C → C is monotonic, ρ ∈ uco(C) is backward
complete for f and c2 ∈ ρ, then lfp(f) ≤C c2 ⇔ lfp(ρf) ≤C c2. In particular, if
〈ρ,≤C〉 is ACC then the Kleene iterates of lfp(ρf) are finitely many.

In the following sections we apply this general abstraction technique for a
number of different language inclusion problems, by designing decision algo-
rithms which rely on specific backward complete abstractions of ℘(Σ∗).

4 An Algorithmic Framework for Language Inclusion

4.1 Languages as Fixed Points

Let A = 〈Q, δ, I, F,Σ〉 be a FA. Given S, T ⊆ Q, define

WAS,T , {u ∈ Σ∗ | ∃q ∈ S, ∃q′ ∈ T, q
u
 q′} .

When S = {q} or T = {q′} we abuse the notation and write WAq,T , WAS,q′ , or

WAq,q′ . Also, we omit the automaton A in superscripts when this is clear from the

context. The language accepted by A is therefore L(A) = WAI,F . Observe that

L(A) =
⋃
q∈IW

A
q,F =

⋃
q∈FW

A
I,q (2)

where, as usual,
⋃
∅ = ∅. Let us recall how to define the language accepted by

an automaton as a solution of a set of equations [24]. Given a Boolean predicate

6 P. Ganty, F. Ranzato and P. Valero.

1 2

b

a

ba

Fig. 1. A finite automaton A with L(A) = (a+ (b+a))∗.

p(x) (typically a membership predicate) and two sets T and F , we define the
following parametric choice function:

ψTF (p(x)) ,

{
T if p(x) holds

F otherwise
.

The FA A induces the following set of equations, where the Xq’s are variables
of type Xq ∈ ℘(Σ∗) indexed by states q ∈ Q:

Eqn(A) , {Xq = ψ
{ε}
∅ (q ∈ F) ∪

⋃
a∈Σ,q′∈δ(q,a)aXq′ | q ∈ Q} .

Thus, the functions in the right-hand side of the equations in Eqn(A) have
type ℘(Σ∗)|Q| → ℘(Σ∗). Since 〈℘(Σ∗)|Q|,⊆〉 is a (product) complete lattice (as
〈℘(Σ∗),⊆〉 is a complete lattice) and all the right-hand side functions in Eqn(A)
are monotonic, the least solution 〈Yq〉q∈Q of Eqn(A) does exist and it is easily
seen that for every q ∈ Q, Yq = WAq,F holds.

Note that, by using right (rather than left) concatenations, one could also de-
fine an equivalent set of equations whose least solution coincides with 〈WAI,q〉q∈Q
instead of 〈WAq,F 〉q∈Q.

Example 4.1. Let us consider the automaton A in Figure 1. The set of equa-
tions induced by A are as follows:

Eqn(A) =

{
X1 = {ε} ∪ aX1 ∪ bX2

X2 = ∅ ∪ aX1 ∪ bX2

.
♦

Equivalently, the equations in Eqn(A) can be stated using an “initial” vector
#»εF ∈ ℘(Σ∗)|Q| and the function PreA : ℘(Σ∗)|Q|→℘(Σ∗)|Q| defined as follows:

#»εF , 〈ψ{ε}∅ (q ∈ F)〉q∈Q , PreA(〈Xq〉q∈Q) , 〈
⋃
a∈Σ,q′∈δ(q,a)aXq′〉q∈Q .

Since ε ∈ WAq,F for all q ∈ F , the least fixpoint computation can start from

the vector #»εF and iteratively apply PreA, that is, it turns out that

〈WAq,F 〉q∈Q = lfp(λ
»

X. #»εF ∪ PreA(
»

X)) . (3)

Together with Equation (2), it follows that L(A) equals the union of the com-

ponent languages of the vector lfp(λ
»

X. #»εF ∪PreA(
»

X)) indexed by initial states
in I.

Language Inclusion Algorithms as Complete Abstract Interpretations 7

Example 4.2 (Continuation of Example 4.1). The fixpoint characteriza-
tion of 〈WAq,F 〉q∈Q is:(

WAq1,q1
WAq2,q1

)
= lfp

(
λ

(
X1

X2

)
.

(
{ε} ∪ aX1 ∪ bX2

∅ ∪ aX1 ∪ bX2

))
=

(
(a+ (b+a))∗

(a+ b)∗a

)
. ♦

Fixpoint-based Inclusion Check. Consider the language inclusion problem
L1 ⊆ L2, where L1 = L(A) for some FA A = 〈Q, δ, I, F,Σ〉. The language L2

can be formalized as a vector in ℘(Σ∗)|Q| as follows:

»

L2
I , 〈ψL2

Σ∗(q ∈ I)〉q∈Q. (4)

Using (2), (3) and (4), it is routine to prove that

L(A) ⊆ L2 ⇔ lfp(λ
»

X. #»εF ∪ PreA(
»

X)) ⊆ # »

L2
I . (5)

4.2 Abstract Inclusion Check using Closures

In what follows we will use Theorem 3.1 for solving the language inclusion prob-
lem, where we will have that C = 〈℘(Σ∗)|Q|,⊆〉, f = λ

»

X. #»εF ∪ PreA(
»

X) and
ρ : ℘(Σ∗)|Q| → ℘(Σ∗)|Q| is an upper closure operator.

Theorem 4.3. Let Σ be an alphabet. If ρ ∈ uco(℘(Σ∗)) is backward complete
for λX ∈ ℘(Σ∗). aX for all a ∈ Σ, then, for all FAs A = 〈Q, δ, I, F,Σ〉, the

closure ρ is backward complete for PreA and λ
»

X. #»εF ∪ PreA(
»

X).

Corollary 4.4. If ρ ∈ uco(℘(Σ∗)) is backward complete for λX ∈ ℘(Σ∗). aX

for all a ∈ Σ then ρ(lfp(λ
»

X. #»εF ∪ PreA(
»

X))) = lfp(λ
»

X. ρ(#»εF ∪ PreA(
»

X))).

Note that if ρ is backward complete for λX.aX for all a ∈ Σ and L2 ∈ ρ
then, as a consequence of Theorem 3.1 and Corollary 4.4, the equivalence (5)
becomes

L(A) ⊆ L2 ⇔ lfp(λ
»

X. ρ(#»εF ∪ PreA(
»

X))) ⊆ # »

L2
I . (6)

4.3 Abstract Inclusion Check using Galois Connections

To solve a language inclusion problem L(A) ⊆ L2 using equivalence (6) we
must first compute the corresponding least fixpoint and then decide its inclusion
in

»

L2
I . Since closure operators are fully isomorphic to Galois connections [7,

Section 6], they allow us to conveniently define and reason on abstract domains
independently of their representation. Recall that a Galois Connection (GC) or
adjunction between two posets 〈C,≤C〉 (called concrete domain) and 〈A,≤A〉
(called abstract domain) consists of two functions α : C → A and γ : A → C
such that α(c) ≤A a ⇔ c ≤C γ(a) always holds. A Galois Connection is denoted

by 〈C,≤C〉 −−−→←−−−α
γ
〈A,≤A〉. In an adjunction, α is called the left-adjoint of γ, and,

dually, γ is called the right-adjoint of α. This terminology is justified by the fact

8 P. Ganty, F. Ranzato and P. Valero.

that if some function α : C → A admits a right-adjoint γ : A → C then this is
unique (and this dually holds for left-adjoints).

The next result shows that there exists an algorithm that solves the lan-
guage inclusion problem L(A) ⊆ L2 on an abstraction D of the concrete domain
of languages 〈℘(Σ∗),⊆〉 whenever D satisfies a list of requirements related to
backward completeness and computability.

Theorem 4.5. Let A = 〈Q, δ, I, F,Σ〉 be a FA and let L2 be a language over Σ.

Let 〈℘(Σ∗),⊆〉 −−−→←−−−α
γ
〈D,≤D〉 be a GC where 〈D,≤D〉 is a poset. Assume that

the following properties hold:
(i) L2 ∈ γ(D) and for every a ∈ Σ and X ∈ ℘(Σ∗), α(aX) = α(aγα(X)).
(ii) (D,≤D,t) is an effective domain, meaning that: (D,≤D,t) is an ACC

join-semilattice, every element of D has a finite representation, ≤D is de-
cidable and t is a computable binary lub.

(iii) There is an algorithm, say Pre](
»

X), which computes α(PreA(γ(
»

X))), for

all
»

X ∈ ℘(Σ∗)|Q|.
(iv) There is an algorithm, say ε], computing α(#»εF).

(v) There is an algorithm, say Incl](
»

X), deciding the abstract inclusion
»

X ≤D α(
»

L2
I), for every vector

»

X ∈ α(℘(Σ∗)|Q|).
Then, the following algorithm decides whether L(A) ⊆ L2:

〈Yq〉q∈Q := Kleene(λ
»

X. ε] t Pre](
»

X),
#»∅∅∅);

return Incl](〈Yq〉q∈Q);

Quasiorder Galois Connections. It turns out that Theorem 4.5 still holds
for abstract domains which are mere qosets rather than posets.

Definition 4.6 (Quasiorder GC). A quasiorder GC (QGC) 〈C,≤C〉 −−−→←−−−α
γ

〈D,≤D〉 consists of: (a) two qosets 〈C,≤C〉 and 〈D,≤D〉 such that one of them
is a poset; (b) two functions α : C → D and γ : D → C such that α(c) ≤D d ⇔
c ≤C γ(d) holds for all c ∈ C and d ∈ D.

Analogously to GCs, it is easily seen that in QGCs both α and γ are mono-
tonic as well as c ≤C γ(α(c)) and α(γ(d)) ≤D d always hold. Observe that if
C is a poset and d ≤D d′ ≤D d with d 6= d′ then γ(d) = γ(d′), because γ is
monotonic, and conversely, if D is a poset and c ≤C c′ ≤C c with c 6= c′ then
α(c) = α(c′) holds. Similarly to GCs, if C is a poset then γ ◦ α ∈ uco(〈C,≤C〉)
holds for QGCs.

In the following, we apply all the standard order-theoretic notions used for
posets also to a qoset 〈D,≤D〉 by implicitly referring to the quotient poset
〈D/∼=D

,≤D/∼=D
〉 where ∼=D , ≤D ∩ ≤−1D . For example:

– 〈D,≤D〉 is ACC (CPO) means that the poset 〈D/∼=D
,≤D/∼=D

〉 is ACC (CPO).
– 〈D,≤D〉 is a join-semilattice means that 〈D/∼=D

,≤D/∼=D
〉 is a join-semilattice;

a binary lub for D (one could have several binary lubs) is a map λ〈d, d′〉.dtd′
such that λ〈[d]∼=D

, [d′]∼=D
〉.[dt d′]∼=D

is the lub in the poset 〈D/∼=D
,≤D/∼=D

〉.

Corollary 4.7. Theorem 4.5 still holds for a QGC 〈℘(Σ∗),⊆〉 −−−→←−−−α
γ
〈D,≤D〉

where 〈D,≤D〉 is a qoset.

Language Inclusion Algorithms as Complete Abstract Interpretations 9

5 Instantiating the Framework

In this section we focus on a particular class of closures on sets of words: those
induced by quasiorder relations on words. Then, we provide a list of conditions
on quasiorders such that the induced closures fit our framework. In addition, we
study some instances of such quasiorders and compare them.

5.1 Word-based Abstractions

Let 6 ⊆ Σ∗ ×Σ∗ be a quasiorder relation on words. The corresponding closure
operator ρ6 ∈ uco(℘(Σ∗)) is defined as follows:

ρ6(X) , {v ∈ Σ∗ | ∃u ∈ X, u 6 v} . (7)

Thus, ρ6(X) is the 6-upward closure of X and it is easy to check that ρ6 is
indeed a closure on 〈℘(Σ∗),⊆〉.

A quasiorder 6 on Σ∗ is called left-monotonic (resp. right-monotonic) if
∀y, x1, x2 ∈ Σ∗, x1 6 x2 ⇒ yx1 6 yx2 (resp. x1y 6 x2y). Also, 6 is called
monotonic if it is both left- and right-monotonic.

Definition 5.1 (L-Consistent Quasiorder). Let L ∈ ℘(Σ∗). A quasiorder
6L on Σ∗ is called left (resp. right) L-consistent when: (a) 6L ∩ (L×¬L) = ∅
and (b) 6L is left- (resp. right-) monotonic. Also, 6L is called L-consistent when
it is both left and right L-consistent.

It turns out that a L-consistent quasiorder induces a closure which includes
L and is backward complete for concatenation.

Lemma 5.2. Let L be a language over Σ and 6L be a left (resp. right) L-
consistent quasiorder on Σ∗. Then,
(a) ρ6L

(L) = L.
(b) ρ6L

is backward complete for λX. aX (resp. λX.Xa) for all a ∈ Σ.

Moreover, we show that the 6-upward closure ρ6 in (7) can be equiva-
lently defined through the qoset of antichains. In fact, the qoset of antichains
〈AC〈Σ∗,6〉,v〉 can be viewed as a language abstraction through the minor ab-
straction map. Let α6 : ℘(Σ∗) → AC〈Σ∗,6〉 and γ6 : AC〈Σ∗,6〉 → ℘(Σ∗) be
defined as follows:

α6(X) , bXc , γ6(Y) , ρ6(Y) . (8)

Theorem 5.3. Let 〈Σ∗,6〉 be a qoset.

(a) 〈℘(Σ∗),⊆〉 −−−−→←−−−−
α6

γ6
〈AC〈Σ∗,6〉,v〉 is a QGC.

(b) γ6 ◦ α6 = ρ6.

The QGC 〈℘(Σ∗),⊆〉 −−−−→←−−−−
α6

γ6
〈AC〈Σ∗,6〉,v〉 allows us to represent and ma-

nipulate 6-upward closed sets in ℘(Σ∗) using finite subsets, as already shown
by Abdulla et al. [1].

10 P. Ganty, F. Ranzato and P. Valero.

We are now in position to show that, given a language L2 whose membership
decision problem is decidable, for every decidable L2-consistent wqo relation

6L2
, the QGC 〈℘(Σ∗),⊆〉 −−−−−→←−−−−−

α6L2

γ6L2 〈AC〈Σ∗,6L2
〉,v〉 of Theorem 5.3 (a) yields an

algorithm for deciding the inclusion L(A) ⊆ L2 where A is a FA. In particular,
for a left L2-consistent wqo 6lL2

, the algorithm FAIncW solves this inclusion
problem. FAIncW is called “word-based” algorithm because the vector 〈Yq〉q∈Q
used by FAIncW consists of finite sets of words.

FAIncW: Word-based algorithm for L(A) ⊆ L2

Data: FA A = 〈Q, δ, I, F,Σ〉; a decision procedure for
membership in L2; a decidable left L2-consistent wqo 6l

L2
.

1 〈Yq〉q∈Q := Kleene(λ
»
X. b #»εF c t bPreA(

»
X)c, #»∅∅∅);

2 forall q ∈ I do
3 forall u ∈ Yq do
4 if u /∈ L2 then return false;

5 return true;

Theorem 5.4. Let A be a FA and let L2 be a language such that: (i) membership
in L2 is decidable; (ii) there exists a decidable left L2-consistent wqo on Σ∗.
Then, the algorithm FAIncW decides the inclusion L(A) ⊆ L2.

A symmetric version of algorithm FAIncW (and of Theorem 5.4) for right L2-
consistent wqos, which relies on equations concatenating to the right (instead of
to the left as in Eqn(A)), can be found in the extended version of this paper [14].

In what follows, we will consider different quasiorders and we will show that
they fulfill the requirements of Theorem 5.4 (or its symmetric version for right
quasiorders), so that they yield algorithms for solving the language inclusion
problem.

5.2 Nerode Quasiorders

Given w ∈ Σ∗ and X ∈ ℘(Σ∗), left and right quotients are defined as usual:
w−1X , {u ∈ Σ∗ | wu ∈ X} and Xw−1 , {u ∈ Σ∗ | uw ∈ X}. Given a
language L ⊆ Σ∗, let us define the following quasiorder relations on Σ∗:

u 5lL v
4⇐⇒ Lu−1 ⊆ Lv−1 , u 5rL v

4⇐⇒ u−1L ⊆ v−1L .

De Luca and Varricchio [8] call them, resp., the left (5lL) and right (5rL) Nerode
quasiorders relative to L. The following result shows that Nerode quasiorders are
the most general (i.e., greatest for set inclusion) L2-consistent quasiorders for
which the algorithm FAIncW can be instantiated to decide a language inclusion
L(A) ⊆ L2.

Language Inclusion Algorithms as Complete Abstract Interpretations 11

Lemma 5.5. Let L ⊆ Σ∗ be a language.
(a) 5lL and 5rL are, resp., left and right L-consistent quasiorders. If L is regular

then 5lL and 5rL are, additionally, decidable wqos.
(b) Let 6 be a quasiorder on Σ∗. If 6 is left (resp. right) L-consistent then

ρ5l
L
⊆ ρ6 (resp. ρ5r

L
⊆ ρ6).

Let us now consider a first instantiation of Theorem 5.4. Because member-
ship is decidable for regular languages, Lemma 5.5 (a) for 5lL2

implies that
the hypotheses (i) and (ii) of Theorem 5.4 are satisfied, so that the algorithm
FAIncW decides the inclusion L(A) ⊆ L2. Furthermore, under these hypotheses,
Lemma 5.5 (b) shows that 5lL2

is the most general (i.e., greatest for set inclusion)
left L2-consistent quasiorder relation on Σ∗ for which the algorithm FAIncW can
be instantiated for deciding an inclusion L(A) ⊆ L2.

Remark 5.6 (On the Complexity of Nerode quasiorders). For the inclu-
sion problem between languages generated by finite automata, deciding the (left
or right) Nerode quasiorder can be easily shown4 to be as hard as the language
inclusion problem, which is PSPACE-complete. For the inclusion problem of a
language generated by an automaton within the trace set of a one-counter net
(cf. Section 5.3) the right Nerode quasiorder is a right language-consistent well-
quasiorder but it turns out to be undecidable (cf. Lemma 5.12). More details
can be found in the extended version of this paper [14].

5.3 State-based Quasiorders

Consider the inclusion problem L(A1) ⊆ L(A2) where A1 and A2 are FAs. In the
following, we study a class of well-quasiorders based on A2, called state-based
quasiorders. This is a strict subclass of Nerode quasiorders defined in Section 5.2
and sidesteps the untractability or undecidability of Nerode quasiorders (cf. Re-
mark 5.6) yet allowing to define an algorithm solving the language inclusion
problem.

Inclusion in Regular Languages. We define the quasiorders ≤lA and ≤rA on
Σ∗ induced by a FA A = 〈Q, δ, I, F,Σ〉 as follows:

u ≤lA v
4⇐⇒ preAu (F) ⊆ preAv (F) , u ≤rA v

4⇐⇒ postAu (I) ⊆ postAv (I) , (9)

where, for all X ⊆ Q and u ∈ Σ∗, preAu (X) , {q ∈ Q | u ∈ WAq,X} and

postAu (X) , {q′ ∈ Q | u ∈WAX,q′}.

Lemma 5.7. Let A be a FA. Then, ≤lA and ≤rA are, resp., decidable left and
right L(A)-consistent wqos.

4 Sketch: Given A1 = (Q1, δ1, I1, F1, Σ) and A2 = (Q2, δ2, I2, F2, Σ) define A3 =
(Q1 ∪Q2 ∪ {q†}, δ3, {q†}, F1 ∪ F2) where δ3 maps (q†, a) to I1, (q†, b) to I2 and like
δ1 or δ2 elsewhere. Then, it turns out that a 5r

L(A3)
b ⇔ a−1L(A3) ⊆ b−1L(A3) ⇔

L(A1) ⊆ L(A2).

12 P. Ganty, F. Ranzato and P. Valero.

It follows from Lemma 5.7 that Theorem 5.4 applies to ≤lA2
(and ≤rA2

), so

that one can instantiate the algorithm FAIncW with the wqo ≤lA2
for deciding

L(A1) ⊆ L(A2). Turning back to the left Nerode wqo 5lL(A2)
we find that:

u 5lL(A2)
v ⇔ L(A2)u−1 ⊆ L(A2)v−1 ⇔W

I,pre
A2
u (F)

⊆W
I,pre

A2
v (F)

.

Since preA2
u (F) ⊆ preA2

v (F) ⇒ W
I,pre

A2
u (F)

⊆ W
I,pre

A2
v (F)

, it follows that

u ≤lA2
v ⇒ u 5lL(A2)

v. Moreover, by Lemmas 5.5 (b) and 5.7, we have that
ρ≤l
L(A2)

⊆ ρ≤l
A2

.

Simulation-based Quasiorders. Recall that, given a FA A = 〈Q, δ, I, F,Σ〉,
a simulation on A is a binary relation � ⊆ Q × Q such that if p � q then:
(i) p ∈ F implies q ∈ F and (ii) for every transition p

a−→ p′, there exists a

transition q
a−→ q′ such that p′ � q′. It is well-known that simulation implies

language inclusion, i.e., if � is a simulation on A then

q � q′ ⇒WAq,F ⊆WAq′,F .

We lift a quasiorder � on Q to a quasiorder �∀∃ on ℘(Q) as follows:

X �∀∃ Y 4⇐⇒ ∀x ∈ X,∃y ∈ Y, x � y ,

so that X �∀∃ Y ⇒ WAX,F ⊆ WAY,F holds. Therefore, we define the right
simulation-based quasiorder �rA on Σ∗ as follows:

u �rA v
4⇐⇒ postAu (I) �∀∃ postAv (I) . (10)

Lemma 5.8. Given a simulation relation � on A, the right simulation-based
quasiorder �rA is a decidable right L(A)-consistent wqo.

Thus, once again, Theorem 5.4 applies to�rA2
and this allows us to instantiate

the algorithm FAIncW to �rA2
for deciding L(A1) ⊆ L(A2).

Observe that u �rA2
v implies W

post
A2
u (I),F

⊆ W
post

A2
v (I),F

, which is equiva-

lent to the right Nerode quasiorder u 5rL(A2)
v, so that u �rA2

v ⇒ u 5rL(A2)
v.

Moreover, u ≤rA2
v ⇒ u �rA2

v trivially holds. Summing up, the following con-
tainments relate (the right versions of) state-based, simulation-based and Nerode
quasiorders:

≤rA2
⊆ �rA2

⊆ 5rL(A2)
.

All these quasiorders are decidable L(A2)-consistent wqos so that the algorithm
FAIncW can be instantiated for each of them for deciding L(A1) ⊆ L(A2).

Inclusion in Traces of One-Counter Nets. We show that our framework can
be instantiated to systematically derive an algorithm for deciding the inclusion
L(A) ⊆ L2 where L2 is the trace set of a one-counter net. This is accomplished

Language Inclusion Algorithms as Complete Abstract Interpretations 13

by defining a decidable L2-consistent quasiorder so that Theorem 5.4 can be
applied.

Intuitively, a one-counter net is a FA equipped with a nonnegative integer
counter. Formally, a One-Counter Net (OCN) [17] is a tuple O = 〈Q,Σ, δ〉 where
Q is a finite set of states, Σ is an alphabet and δ ⊆ Q×Σ × {−1, 0, 1} ×Q is a
set of transitions. A configuration of O is a pair qn consisting of a state q ∈ Q
and a value n ∈ N for the counter. Given two configurations qn and q′n′ we
write qn

a−→ q′n′ and call it a a-step (or simply step) if there exists a transition
(q, a, d, q′) ∈ δ such that n′ = n+d. Given qn ∈ Q×N, the trace set T (qn) ⊆ Σ∗
of an OCN is defined as follows:

T (qn) , {u ∈ Σ∗ | Zqnu 6= ∅} where

Zqnu , {qknk | qn
a1−→ q1n1

a2−→ · · · ak−→ qknk, a1 · · · ak = u} .

Observe that Zqnε = {qn} and Zqnu is a finite set for every word u ∈ Σ∗.
Let N⊥ , N∪{⊥} where ⊥ ≤N⊥ n holds for all n ∈ N⊥, while for all n, n′ ∈ N,

n ≤N⊥ n
′ is the standard ordering relation. For a finite set of states S ⊆ Q× N

define the so-called macro state MS : Q→ N⊥ as follows:

MS(q) , max{n ∈ N | qn ∈ S} ,

where max∅ , ⊥. Define the following quasiorder on Σ∗:

u ≤rqn v
4⇐⇒ ∀q′ ∈ Q, MZqn

u
(q′) ≤N⊥ MZqn

v
(q′) .

Lemma 5.9. Given a OCN O together with a configuration qn, ≤rqn is a right
T (qn)-consistent decidable wqo.

Thus, as a consequence of Theorem 5.4, Lemma 5.9 and the decidability
of membership in T (qn), we derive the following known decidability result [19,
Theorem 3.2] by resorting to our framework.

Theorem 5.10. Given a FA A and a OCN O together with a configuration qn,
the problem L(A) ⊆ T (qn) is decidable.

Moreover, the following result closes a conjecture made by de Luca and Var-
ricchio [8, Section 6].

Lemma 5.11. The right Nerode quasiorder 5rT (qn) is a well-quasiorder.

It is worth remarking that, by Lemma 5.5 (a), the left and right Nerode
quasiorders relative to T (qn) are T (qn)-consistent. However, the left Nerode
quasiorder does not need to be a wqo for otherwise T (qn) would be regular.

Lemma 5.12. The right Nerode quasiorder for the trace set of OCN is unde-
cidable.

We conjecture that, using our framework, Theorem 5.10 can be extended to
traces of Petri Nets, which is already known to be true [19].

14 P. Ganty, F. Ranzato and P. Valero.

6 A Novel Perspective on the Antichain Algorithm

Let A1 = 〈Q1, δ1, I1, F1, Σ〉 and A2 = 〈Q2, δ2, I2, F2, Σ〉 be two FAs and consider
the left L(A2)-consistent wqo ≤lA2

defined in (9). Theorem 5.4 shows that the
algorithm FAIncW solves the inclusion problem L(A1) ⊆ L(A2) by computing on
the qoset abstraction 〈AC〈Σ∗,≤l

A2
〉,v〉 of antichains of 〈Σ∗,≤lA2

〉.
Since u ≤lA2

v ⇔ preA2
u (F2) ⊆ preA2

v (F2) holds, we can equivalently consider

the set of states preA2
u (F2) rather than a word u ∈ Σ∗. This leads us to design

an algorithm analogous to FAIncW but computing on the poset 〈AC〈℘(Q2),⊆〉,v〉
of antichains of sets of states of 〈℘(Q2),⊆〉. In order to do this, the poset
〈AC〈℘(Q2),⊆〉,v〉 is viewed as an abstraction of the qoset 〈AC〈Σ∗,≤l

A2
〉,v′〉 (where

v′ is used for distinguishing the two ordering relations on antichains) through
the abstraction and concretization maps αA2

: AC〈Σ∗,≤l
A2
〉 → AC〈℘(Q2),⊆〉 and

γA2
: AC〈℘(Q2),⊆〉 → AC〈Σ∗,≤l

A2
〉 defined as follows:

αA2
(X) , {preA2

u (F2) ∈ ℘(Q2) | u ∈ X} ,
γA2

(Y) , b{u ∈ Σ∗ | preA2
u (F2) ∈ Y }c .

Lemma 6.1. 〈AC〈Σ∗,≤l
A2
〉,v′〉 −−−−−→←−−−−−

αA2

γA2 〈AC〈℘(Q2),⊆〉,v〉 is a QGC.

Combining the word-based algorithm FAIncW with αA2
and γA2

we are able to
systematically derive a new algorithm which solves the inclusion L(A1) ⊆ L(A2)
using the abstract domain 〈AC〈℘(Q2),⊆〉,v〉 which is viewed as an abstraction of
〈℘(Σ∗),⊆〉 by composing the following two QGCs:

〈℘(Σ∗),⊆〉 −−−−−→←−−−−−
α≤l
A2

γ≤l
A2 〈AC〈Σ∗,≤l

A2
〉,v′〉 , [by Theorem 5.3 (a)]

〈AC〈Σ∗,≤l
A2
〉,v′〉 −−−−→←−−−−

αA2

γA2 〈AC〈℘(Q2),⊆〉,v〉 . [by Lemma 6.1]

Let α : ℘(Σ∗)→ AC〈℘(Q2),⊆〉, γ : AC〈℘(Q2),⊆〉 → ℘(Σ∗) and PreA2

A1
: ℘(Q2)|Q1| →

℘(Q2)|Q1| be defined as follows:

α(X) , b{preA2
u (F2) ∈ ℘(Q2) | u ∈ X}c ,

γ(Y) , {u ∈ Σ∗ | ∃S ∈ Y, S ⊆ preA2
u (F2)} ,

PreA2

A1
(〈Xq〉q∈Q1) , 〈b

{
preA2

a (S) | ∃a ∈ Σ, q′ ∈ Q1, q
′ ∈ δ1(q, a) ∧ S ∈ Xq′

}
c〉q∈Q1 .

Lemma 6.2. The following properties hold:
(a) α = αA2

◦ α≤l
A2

(b) γ = γ≤l
A2

◦ γA2

(c) 〈℘(Σ∗),⊆〉 −−−→←−−−α
γ
〈AC〈℘(Q2),⊆〉,v〉 is a GC

(d) γ ◦ α = ρ≤l
A2

Language Inclusion Algorithms as Complete Abstract Interpretations 15

(e) For all
»

X ∈ α(℘(Σ∗)|Q1|), PreA2

A1
(

»

X) = αA2
◦ α≤l

A2

◦ PreA1
◦ γ≤l

A2

◦ γA2
(

»

X)

It follows from Lemma 6.2 that the GC 〈℘(Σ∗),⊆〉 −−−→←−−−α
γ
〈AC〈℘(Q2),⊆〉,v〉

together with the abstract function PreA2

A1
satisfy the hypotheses (i)-(iv) of The-

orem 4.5. Thus, in order to obtain an algorithm for deciding L(A1) ⊆ L(A2)
it remains to show that requirement (v) of Theorem 4.5 holds, i.e., there is an

algorithm to decide whether
#»

Y v α(
»

L2
I2) for every

#»

Y ∈ α(℘(Σ∗))|Q1|.

Let us notice that the Kleene iterates of the function λ
»

X. α(#»εF1)tPreA2

A1
(

»

X)
of Theorem 4.5 are vectors of antichains in 〈AC〈℘(Q2),⊆〉,v〉, where each com-
ponent indexed by some q ∈ Q1 represents (through its minor set) a set of
sets of states that are predecessors of F2 in A2 by a word generated by A1

from that state q (i.e., preA2
u (F2) with u ∈ WA1

q,F1
). Since ε ∈ WA1

q,F1
for all

q ∈ F1 and preA2
ε (F2) = F2 the iterations of the procedure Kleene begin with

α(#»εF1) = 〈ψF2
∅ (q ∈ F1)〉q∈Q1 . By taking the minor of each vector component,

we are considering smaller sets which still preserve the relation v (because

A v B ⇔ bAc v B ⇔ A v bBc ⇔ bAc v bBc). Let
#»

Y be the fixpoint
computed by the Kleene procedure. We have that, for each component q ∈ Q1,
#»

Y q = b{preA2
u (F2) | u ∈WA1

q,F1
}c. Whenever L(A1) ⊆ L(A2) holds, all the sets

of states in
#»

Y q for q ∈ I1 are predecessors of F2 in A2 by words in L(A2),
so that they all contain at least one initial state in I2. As a result, we obtain
the following algorithm FAIncS, a “state-based” inclusion algorithm for deciding
L(A1) ⊆ L(A2).

FAIncS: State-based algorithm for L(A1) ⊆ L(A2)

Data: FAs A1 = 〈Q1, δ1, I1, F1, Σ〉 and A2 = 〈Q2, δ2, I2, F2, Σ〉.

1 〈Yq〉q∈Q1 := Kleene(λ
»
X. α(#»εF1) t PreA2

A1
(

»
X),

#»∅∅∅);

2 forall q ∈ I1 do
3 forall s ∈ Yq do
4 if s ∩ I2 = ∅ then return false;

5 return true;

Theorem 6.3. Let A1,A2 be FAs. The algorithm FAIncS decides the inclusion
L(A1) ⊆ L(A2).

De Wulf et al. [10] introduced two antichain algorithms, called forward and
backward, for deciding the universality of the language generated by a FA, i.e.,
whether the language is Σ∗ or not. Then, they extended the backward algorithm
in order to decide language inclusion. In what follows we show that FAIncS is
equivalent to the corresponding extension of the forward algorithm and, there-
fore, dual to the antichain algorithm of De Wulf et al. [10].

To do that, we first define the poset of antichains in which the forward
antichain algorithm computes its fixpoint. Then, we give a formal definition of

16 P. Ganty, F. Ranzato and P. Valero.

the forward antichain algorithm for deciding language inclusion and show that
this algorithm coincides with FAIncS when applied to the reverse automata.
Since the language inclusion between two languages holds iff it holds between
the reverse languages generated by the reverse automata, we conclude that the
algorithm FAIncS is equivalent to the forward antichain algorithm.

Let us consider the following poset of antichains 〈AC〈℘(Q2),⊆〉, ṽ〉 where

X ṽY 4⇐⇒ ∀y ∈ Y,∃x ∈ X, x ⊆ y .

It is easy to see that ṽ and v−1 coincides. As observed by De Wulf et al. [10], it
turns out that 〈AC〈℘(Q2),⊆〉, ṽ〉 is a finite lattice, where ũ and t̃ denote, resp.,

glb and lub of antichains. The lattice 〈AC〈℘(Q2),⊆〉, ṽ〉 is the domain in which the
forward antichain algorithm computes on for deciding universality. The following
result extends this forward algorithm in order to decide language inclusion.

Theorem 6.4 ([10, Theorems 3 and 6]). Let
»FP ,

d̃
{ # »

X ∈ (AC〈℘(Q2),⊆〉)
|Q1| | # »

X = PostA2

A1
(

»

X) ũ 〈ψ{I2}∅ (q ∈ I1)〉q∈Q1
} with

PostA2

A1
(〈Xq〉q∈Q1

),〈b{postA2
a (X) |∃a∈Σ, q′ ∈ Q1, X∈Xq′ , q ∈ δ1(q′, a)}c〉q∈Q1

.

Then, L(A1) * L(A2) iff ∃q ∈ F1,
»FPq ṽ {F c2}.

Let AR denote the reverse of A, where arrows are flipped and the initial/final
states become final/initial. Note that language inclusion can be decided by con-
sidering the reverse automata since L(A1) ⊆ L(A2) ⇔ L(AR1) ⊆ L(AR2) holds.

Furthermore, it is straightforward to check that PostA2

A1
= Pre

AR
2

AR
1

. We therefore

obtain the following result.

Theorem 6.5. Let
»FP ,

d̃
{ # »

X ∈ (AC〈℘(Q2),⊆〉)
|Q1| | # »

X = PreA2

A1
(

»

X) ũ 〈ψ{F2}
∅ (q ∈ F1)〉q∈Q1

}.
Then, L(A1) * L(A2) iff ∃q ∈ I1,

»FPq ṽ {Ic2}.

Since ṽ = v−1, we have that ũ = t. Moreover, by definition of α we have

that 〈ψ{F2}
∅ (q ∈ F1)〉q∈Q1

= α(#»εF1). Therefore, we can rewrite the vector
»FP

of Theorem 6.5 as
»FP =

⊔
{ # »

X | # »

X = PreA2

A1
(

»

X) t α(#»εF1)}, which is the

least fixpoint for v of PreA2

A1
above α(#»εF1). It turns out that the Kleene iterates

of this least fixpoint computation that converge to
»FP exactly coincide with

the iterates computed by the Kleene procedure of the state-based algorithm
FAIncS. In particular, if

#»

Y is the output vector of the call to Kleene in FAIncS

then
#»

Y =
»FP . Furthermore,

»FPq ṽ {Ic2} ⇔ ∃S ∈
»FPq, S ∩ I2 = ∅. Summing

up, the v-lfp algorithm FAIncS coincides with the ṽ-gfp antichain algorithm of
Theorem 6.5.

We can also derive an algorithm equivalent to FAIncS by considering the
antichain poset 〈AC〈℘(Q2),⊇〉,v〉 for the dual lattice 〈℘(Q2),⊇〉 and by replacing

the functions αA2
, γA2

, α, γ and PreA2

A1
of Lemma 6.2, resp., with:

αcA2
(X) , {cpreA2

u (F c2) | u ∈ X} , γcA2
(Y) , b{u ∈ Σ∗ | cpreA2

u (F c2) ∈ Y }c ,
αc(X) , b{cpreA2

u (F c2) | u ∈ X}c , γc(Y) , {u ∈ Σ∗ |∃y ∈ Y, y ⊇ cpreA2
u (F c2)} ,

Language Inclusion Algorithms as Complete Abstract Interpretations 17

CPreA2

A1
(〈Xq〉q∈Q1

) ,

〈b{cpreA2
a (S) | ∃a ∈ Σ, q′ ∈ Q1, q

′ ∈ δ1(q, a) ∧ S ∈ Xq′}c〉q∈Q1
.

where cpreA2
u (F c2) = (preA2

u (F2))c. When using these functions, we obtain a
lfp algorithm computing on the domain 〈AC〈℘(Q2),⊇〉,v〉. Indeed, it turns out

that L(A1) ⊆ L(A2) iff Kleene(λ
»

X. αc(#»εF1) t CPreA2

A1
(

»

X),
#»∅∅∅) v αc(

»

L2
I1). It

is straightforward to check that this algorithm coincides with the backward an-
tichain algorithm defined by De Wulf et al. [10, Algorithm 1, Theorem 6] since
both compute on the same domain, bXc corresponds to the maximal (w.r.t. set
inclusion) elements of X, αc({ε}) = {F c2} and for all X ∈ αc(℘(Σ∗)), we have
that X v αc(L2)⇔ ∀S ∈ X, I2 * S.

We have thus shown that the two forward/backward antichain algorithms
introduced by De Wulf et al. [10] can be systematically derived by instantiat-
ing our framework. The original antichain algorithms were later improved by
Abdulla et al. [2] and, subsequently, by Bonchi and Pous [4]. Among their im-
provements, they showed how to exploit a precomputed binary relation between
pairs of states of the input automata such that language inclusion holds for all
pairs in the relation. When that binary relation is a simulation relation, our
framework allows to partially match their results by using the quasiorder �rA
defined in Section 5.3. However, this quasiorder relation �rA does not consider
pairs of states Q2 ×Q2 whereas the aforementioned works do.

7 An Equivalent Greatest Fixpoint Algorithm

Let us recall a result from Cousot [5, Theorem 4] that if g : C → C is a monotonic
function on a complete lattice 〈C,≤,∨,∧〉 which admits its unique right-adjoint
g̃ : C → C (i.e., g(c) ≤ c′ ⇔ c ≤ g̃(c′) holds) then the following equivalence
holds: for all c, c′ ∈ C,

lfp(λx. c ∨ g(x)) ≤ c′ ⇔ c ≤ gfp(λy. c′ ∧ g̃(y)) . (11)

This property has been exploited to derive equivalent least/greatest fixpoint-
based invariance proof methods for programs [5]. In the following, we use (11)
to derive an algorithm for deciding the inclusion L(A1) ⊆ L(A2), which relies
on the computation of a greatest fixpoint rather than a least fixpoint. This can
be achieved by exploiting the following simple observation, which provides an
adjunction between concatenation and quotients of sets of words.

Lemma 7.1. For all X,Y ⊆ Σ∗ and w ∈ Σ∗, wY ⊆ Z ⇔ Y ⊆ w−1Z and
Y w ⊆ Z ⇔ Y ⊆ Zw−1.

Given the set of equations induced by a FA A = 〈Q, δ, I, F,Σ〉, we define the

function P̃reA : ℘(Σ∗)|Q| → ℘(Σ∗)|Q| as follows:

P̃reA(〈Xq〉q∈Q) , 〈
⋂
a∈Σ,q′∈δ(q,a) a

−1Xq〉q′∈Q ,

where, as usual,
⋂
∅ = Σ∗. It turns out that P̃reA is the right-adjoint of PreA.

18 P. Ganty, F. Ranzato and P. Valero.

Lemma 7.2. For all
»

X,
#»

Y ∈ ℘(Σ∗)|Q|, PreA(
»

X) ⊆ #»

Y ⇔ # »

X ⊆ P̃reA(
#»

Y).

Hence, from equivalences (5) and (11) we obtain:

L(A1) ⊆ L2 ⇔ #»εF1 ⊆ gfp(λ
»

X.
»

L2
I1 ∩ P̃reA1(

»

X)) . (12)

The following algorithm FAIncGfp decides the inclusion L(A1) ⊆ L2 by im-
plementing the greatest fixpoint computation in equivalence (12). The intuition
behind algorithm FAIncGfp is that

L1 ⊆ L2 ⇔ ∀w ∈ L1, (ε ∈ w−1L2 ⇔ ε ∈
⋂
w∈L1

w−1L2) ,

where L1 = L(A1). Therefore, FAIncGfp computes the set
⋂
w∈L1

w−1L2 by using
the automaton A1 and by considering prefixes of L1 of increasing lengths. This
means that after n iterations of Kleene, the algorithm FAIncGfp has computed⋂
wu∈L1,|w|≤n,q0∈I1,q0

w
 q w

−1L2, for every state q ∈ Q1.

FAIncGfp: Greatest fixpoint algorithm for L(A1) ⊆ L2

Data: FA A1 = 〈Q1, δ1, I1, F1, Σ〉; regular language L2.

1 〈Yq〉q∈Q := Kleene(λ
»
X.

»
L2

I1 ∩ P̃reA1(
»
X),

»

Σ∗);
2 forall q ∈ F1 do
3 if ε /∈ Yq then return false;
4 return true;

The regularity of L2 together with the basic property of regular languages
of being closed under intersections and quotients show that each iterate com-
puted by Kleene(λ

»

X.
»

L2
I1 ∩ P̃reA1

(
»

X),
»

Σ∗) is a (computable) regular language.
To the best of our knowledge, this language inclusion algorithm FAIncGfp has
never been described in the literature before.

Next, we discharge the fundamental assumption on which the correctness of
this algorithm FAIncGfp depends on: the Kleene iterates computed by FAIncGfp

are finitely many. In order to do that, we consider an abstract version of the
greatest fixpoint computation exploiting a closure operator which guarantees
that the abstract Kleene iterates are finitely many. This closure operator ρ≤A2

will be defined by using an ordering relation ≤A2
induced by a FA A2 such

that L2 = L(A2) and will be shown to be forward complete for the function

λ
»

X.
»

L2
I1 ∩ P̃reA1

(
»

X) used by FAIncGfp.
Forward completeness of abstract interpretations [15] is different from and

orthogonal to backward completeness introduced in Section 3 and used in Sec-
tions 4 and 5. In particular, a remarkable consequence of exploiting a forward
complete abstraction is that the Kleene iterates of the concrete and abstract
greatest fixpoint computations coincide. The intuition here is that this for-
ward complete closure ρ≤A2

allows us to establish that all Kleene iterates of

gfp(
»

X.
»

L2
I1∩P̃reA1

(
»

X)) belong to the image of the closure ρ≤A2
, more precisely

that every Kleene iterate is a language which is upward closed for ≤A2
. Interest-

ingly, a similar phenomenon occurs in well-structured transition systems [1,13].

Language Inclusion Algorithms as Complete Abstract Interpretations 19

Let us now describe in detail this abstraction. A closure ρ ∈ uco(C) on a
concrete domain C is forward complete for a monotonic function f : C → C
if ρfρ = fρ holds. The intuition here is that forward completeness means that
no loss of precision is accumulated when the output of a computation of fρ is
approximated by ρ, or, equivalently, f maps elements of ρ into elements of ρ.
Dually to the case of backward completeness, forward completeness implies that
gfp(f) = gfp(fρ) = gfp(ρfρ) holds, when these greatest fixpoints exist (this
is the case, e.g., when C is a complete lattice). It turns out that forward and
backward completeness are related by the following duality on the function f .

Lemma 7.3 ([15, Corollary 1]). Let 〈C,≤C〉 be a complete lattice and assume

that f : C → C admits the right-adjoint f̃ : C → C, i.e., f(c) ≤C c′ ⇔ c ≤C f̃(c′)

holds. Then, ρ is backward complete for f iff ρ is forward complete for f̃ .

Thus, by Lemma 7.3, in the following result instead of assuming the hypothe-
ses implying that a closure ρ is forward complete for the right-adjoint P̃reA1 we
state some hypotheses which guarantee that ρ is backward complete for its left-
adjoint PreA1

.

Theorem 7.4. Let A1 = 〈Q1, δ1, I1, F1, Σ〉 be a FA , L2 be a regular language
and ρ ∈ uco(℘(Σ∗)). Let us assume that:
(1) ρ(L2) = L2;
(2) ρ is backward complete for λX. aX for all a ∈ Σ.

Then, L(A1) ⊆ L2 iff #»εF1 ⊆ gfp(
»

X. ρ(
»

L2
I1 ∩ P̃reA1(

»

X))). Moreover, the Kleene

iterates computed by gfp(
»

X. ρ(
»

L2
I1 ∩ P̃reA1

(
»

X))) coincide in lockstep with those

of gfp(
»

X.
»

L2
I1 ∩ P̃reA1

(
»

X)).

We can now establish that the sequence of Kleene iterates computed by
gfp(

»

X.
»

L2
I1 ∩ P̃reA1

(
»

X)) is finite. Let L2 = L(A2), for some FA A2, and con-
sider the corresponding left state-based quasiorder ≤lA2

on Σ∗ as defined by (9).

Lemma 5.7 tells us that ≤lA2
is a left L2-consistent wqo. Furthermore, since

Q2 is finite we have that both ≤lA2
and (≤lA2

)−1 are wqos, so that, in turn,
〈ρ≤l

A2

,⊆〉 is a poset which is both ACC and DCC. In particular, the definition

of ≤lA2
implies that every chain in 〈ρ≤l

A2

,⊆〉 has at most 2|Q2| elements, so

that if we compute 2|Q2| Kleene iterates then we have necessarily computed the
greatest fixpoint. Moreover, as a consequence of the DCC property we have that
the Kleene iterates of gfp(λ

»

X. ρ≤A2
(

»

L2
I1 ∩ P̃reA1(

»

X))) are finitely many, hence

so are the iterates of gfp(λ
»

X.
»

L2
I1 ∩ P̃reA1(

»

X)) because they go in lockstep as
stated by Theorem 7.4.

Corollary 7.5. Let A1 be a FA and let L2 be a regular language. Then, the
algorithm FAIncGfp decides the inclusion L(A1) ⊆ L2

Finally, it is worth citing that Fiedor et al. [12] put forward an algorithm
for deciding WS1S formulae which relies on the same lfp computation used in

20 P. Ganty, F. Ranzato and P. Valero.

FAIncS. Then, they derive a dual gfp computation by relying on Park’s dual-
ity [22]: lfp(λX. f(X)) = (gfp(λX. (f(Xc)c))c. Their approach differs from ours
since we use the equivalence (11) to compute a gfp, different from the lfp, which
still allows us to decide the inclusion problem. Furthermore, their algorithm de-
cides whether a given automaton accepts ε and it is not clear how their algorithm
could be extended for deciding language inclusion.

8 Conclusion and Future Work

We believe that this work only scratched the surface of the use of well-quasiorders
on words for solving language inclusion problems. In particular, our approach
based on complete abstract interpretations allowed us to systematically derive
within our framework well-known algorithms, such as the antichain algorithms
by De Wulf et al. [10], as well as novel algorithms, such as FAIncGfp, for deciding
the inclusion of regular languages. Due to lack of space, we deliberately omitted
from this paper the study of the inclusion problem L(G) ⊆ L where G is a
context-free grammar, in exchange for a deeper understanding of the L(A) ⊆ L
case. The case L(G) ⊆ L(A) is covered in the extended version [14].

Future directions include leveraging well-quasiorders for infinite words [21] to
shed new light on the inclusion problem between ω languages. Our results could
also be extended to inclusion of tree languages by relying on the extensions of
Myhill-Nerode theorems for tree languages [20]. Another interesting topic for
future work is the enhancement of quasiorders using simulation relations. Even
though we already showed in this paper that simulations can be used to refine
our language inclusion algorithms, we are not on par with the thoughtful use of
simulation relations made by Abdulla et al. [2] and Bonchi and Pous [4]. Finally,
let us mention that the correspondence between least and greatest fixpoint-
based inclusion checks assuming complete abstractions was studied by Bonchi et
al. [3] with the aim of formally connecting sound up-to techniques and complete
abstract interpretations. Further possible developments include the study of our
abstract interpretation-based algorithms for language inclusion from the point
of view of sound up-to techniques.

Acknowledgements. We would like to thank the reviewers for their insightful
feedback that allowed us to find a simpler connection between our work and the
antichain algorithms.

Pierre Ganty completed this work with the support of the Spanish Min-
istry of Economy and Competitiveness project No. PGC2018-102210-B-I00, the
Madrid Regional Government project No. S2018/TCS-4339 and the Ramn y Ca-
jal fellowship RYC-2016-20281. The work of Francesco Ranzato has been par-
tially funded by the University of Padova, SID2018 project “Analysis of STatic
Analyses (ASTA)”, and by the Italian Ministry of Research MIUR, project No.
201784YSZ5 “AnalysiS of PRogram Analyses (ASPRA)”.

Language Inclusion Algorithms as Complete Abstract Interpretations 21

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In Proc. of the 11th Annual IEEE Symp. on Logic
in Computer Science (LICS’96), pages 313–321. IEEE Computer Society, 1996.

2. P. A. Abdulla, Y.-F. Chen, L. Hoĺık, R. Mayr, and T. Vojnar. When simulation
meets antichains. In Proceedings of the 16th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’10), pages
158–174. Springer Berlin Heidelberg, 2010.

3. F. Bonchi, P. Ganty, R. Giacobazzi, and D. Pavlovic. Sound up-to techniques
and complete abstract domains. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS’18). ACM Press, 2018.

4. F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to con-
gruence. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’13), pages 457–468. ACM Press,
2013.

5. P. Cousot. Partial completeness of abstract fixpoint checking. In Proceedings of the
4th International Symposium on Abstraction, Reformulation, and Approximation
(SARA’02), pages 1–25. Springer-Verlag, 2000.

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL’77), pages 238–252. ACM Press, 1977.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL’79), pages 269–282, New York, NY, USA, 1979.
ACM.

8. A. de Luca and S. Varricchio. Well quasi-orders and regular languages. Acta
Informatica, 31(6):539–557, 1994.

9. A. de Luca and S. Varricchio. Finiteness and Regularity in Semigroups and Formal
Languages. Springer, 2011.

10. M. De Wulf, L. Doyen, T. A. Henzinger, and J. F. Raskin. Antichains: A new
algorithm for checking universality of finite automata. In Proceedings of the 18th
International Conference on Computer Aided Verification (CAV’06), pages 17–30.
Springer-Verlag, 2006.

11. A. Ehrenfeucht, D. Haussler, and G. Rozenberg. On regularity of context-free
languages. Theoretical Computer Science, 27(3):311–332, 1983.

12. T. Fiedor, L. Hoĺık, O. Lengál, and T. Vojnar. Nested antichains for WS1S. Acta
Informatica, 56(3):205–228, 2019.

13. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

14. P. Ganty, F. Ranzato, and P. Valero. Complete abstractions for checking language
inclusion. arXiv e-prints, page arXiv:1904.01388, Apr 2019.

15. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples, and refine-
ments in abstract model-checking. In Proceedings of the 8th Static Analysis Sym-
posium (SAS’01), LNCS vol. 2126, pages 356–373. Springer, 2001.

16. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. J. ACM, 47(2):361–416, 2000.

17. P. Hofman and P. Totzke. Trace inclusion for one-counter nets revisited. Theoretical
Computer Science, 735:50–63, July 2018.

22 P. Ganty, F. Ranzato and P. Valero.

18. M. Hofmann and W. Chen. Abstract interpretation from Büchi automata. In
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference
on Computer Science Logic (CSL’14) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS’14). ACM Press, 2014.

19. P. Janar, J. Esparza, and F. Moller. Petri nets and regular processes. Journal of
Computer and System Sciences, 59(3):476–503, 1999.

20. D. Kozen. On the Myhill-Nerode theorem for trees. Bulletin of the EATCS,
47:170–173, 1992.

21. M. Ogawa. Well-quasi-orders and regular ω-languages. Theoretical Computer Sci-
ence, 324(1):55–60, 2004.

22. D. Park. Fixpoint induction and proofs of program properties. Machine Intelli-
gence, 5, 1969.

23. F. Ranzato. Complete abstractions everywhere. In Proceedings of the 14th Inter-
national Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI’13), volume 7737 of LNCS, pages 15–26. Springer, 2013.

24. M. P. Schützenberger. On context-free languages and push-down automata. In-
formation and Control, 6(3):246–264, 1963.

	Language Inclusion Algorithms as Complete Abstract Interpretations

