

Aalborg Universitet

How Diverse Are Federated Query Execution Plans Really?

Jakobsen, Anders Langballe; Montoya, Gabriela; Hose, Katja

Published in:
The Semantic Web

DOI (link to publication from Publisher):
10.1007/978-3-030-32327-1_21

Creative Commons License
CC BY 4.0

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Jakobsen, A. L., Montoya, G., & Hose, K. (2019). How Diverse Are Federated Query Execution Plans Really? In
P. Hitzler, S. Kirrane, O. Hartig, V. de Boer, S. Schlobach, M-E. Vidal, M. Maleshkova, K. Hammar, N. Lasierra,
S. Stadtmüller, K. Hose, & R. Verborgh (Eds.), The Semantic Web: ESWC 2019 Satellite Events - ESWC 2019
Satellite Events, Revised Selected Papers (pp. 105-110). Springer. https://doi.org/10.1007/978-3-030-32327-
1_21

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 16, 2024

https://doi.org/10.1007/978-3-030-32327-1_21
https://vbn.aau.dk/en/publications/0bbc818b-cf78-41c2-9b8e-75df102b7c4b
https://doi.org/10.1007/978-3-030-32327-1_21
https://doi.org/10.1007/978-3-030-32327-1_21

How diverse are federated query execution plans
really?

Anders Langballe Jakobsen, Gabriela Montoya(�), and Katja Hose

Aalborg University, Denmark
{alja,gmontoya,khose}@cs.aau.dk

Abstract. Federated query engines optimize and execute SPARQL
queries over the data accessible via SPARQL endpoints; even in the ab-
sence of information about which sources provide relevant data. Differ-
ent query optimization strategies may produce different execution plans,
which in many cases explains the huge differences in performance that
we encounter with state-of-the-art federated query engines. Related work
has so far mainly focused on execution time and number of selected
sources, overlooking the importance of the execution plans themselves. In
this demonstration paper, we therefore present PIPE, a tool that allows
for comparing federated query engines in terms of performance, execution
plans, and query answers. Currently, PIPE supports five state-of-the-art
federated query engines; we provide a Java library for straightforward
integration of additional federated query engines.

1 Introduction

The efforts of the Semantic Web community have led to the publication of billions
of RDF triples organized into thousands of datasets. A key element of Linked
Data is that the datasets are not isolated but they include links to other datasets,
which allows users to pose queries that cannot be answered using a single dataset
alone. Instead, such federated queries require data from multiple datasets. In
this paper, we consider federated queries that do not include hints about where
the triple patterns should be executed but rely on a federated query engine
to optimize the query, i.e., select relevant sources, decompose the query into
subqueries, delegate those subqueries to the appropriate sources, combine the
partial answers, and compute the final result to the original query. We assume
that a source provides access to a dataset via a SPARQL endpoint, i.e., an RDF
interface that supports full SPARQL expressiveness.

Several federated query engines, such as [1–3, 6], have been proposed in the
last decade. Even if these engines have many differences, including different
implementations of the SPARQL operators, the most important difference is
their query optimization strategies. Different strategies produce quite different
execution plans, and in many cases the huge differences in performance are
mainly due to key differences in the execution plans produced by the engines.
So far, comparisons among these engines have been mainly based on execution
time and to some extent on the number of selected sources, but comparisons that
take the diversity of execution plans into consideration have been very limited
and mainly used for motivating examples.

In this paper, we therefore present PIPE, Performance Inspector and Plan
Explorer, a tool that allows for comparing different federated query engines in
terms of their performance, i.e., planning and execution time, computed execu-
tion plans, and query answers. A key novelty of PIPE is providing a uniform
framework for studying the impact of optimization strategies used by the en-
gines on the shapes of the produced execution plans. Supporting the analysis of
these plans allows for easing the understanding of query optimization strategies,
including the identification of their limitations and the proposal of novel query
optimization strategies.

User

SPARQL Query
Generator

Execution Plan
Visualizer

Result
Checker

Predefined
Queries

Engine Handler Result Aggregator
Stored
Runs

FedX ... Odyssey
...Federated Query Engines

Graphical User Interface

Application Program Interface

Federation

1

Fig. 1. PIPE’s architecture

2 System Architecture

Figure 1 illustrates PIPE’s architecture. The user interacts with our system
through a Graphical User Interface (GUI) that relies on an Application Program
Interface (API) to interact with the federated query engines, and provide an
abstract representation of the engines’ execution plans, results, and performance
measurements. In the remainder of this section, we sketch purpose and core
functionality of each system component.

GUI. It allows to load a predefined SPARQL query or provide a new query
using the simple and advanced query interfaces. These query interfaces allow for
creating queries with different trade-offs between expressiveness, e.g., possible
operators, and usability for novice users, e.g., well-defined query structure. It also
allows for choosing the endpoints for the federation, the federated query engines
to study, and a timeout value. It visualizes the execution plans as trees and allows
to explore the complete answers. If two or more engines produce the same plan,
they are combined in order to ease the comparison of the plans that are actually
different. Further functionality includes saving executions for later study and
checking if the answers obtained by different engines are consistent. Currently,
consistency of the answers is limited to checking the number of answers.

API. Given an analysis request, consisting of a query, federated engines, and
sources to use, the API creates an execution job in which it sequentially runs
each engine to avoid any interference between different executions. Once a query
has been executed on all engines, the API aggregates the results and makes them

available to the user. When execution jobs are created, users are provided with
a unique token that can be used to cancel the execution job at any time. As the
API does not rely on any specific implementation detail from the query engines,
it can work with any federated query engine as long as the engine outputs a
JSON object that adheres to the expected structure.

Federated Query Engine. It identifies relevant sources, decomposes the query
into subqueries, and combines the subquery answers to produce the query an-
swer. Minor changes were done to the engines to homogenize the output of the
query optimization (execution plan), query execution (query results), and the
measurement of relevant metrics. To minimize the code changes and ease the
inclusion of other engines, our changes are mainly provided as a Java library
that can be used to integrate federated query engines that rely on the RDF4J
framework1 into our comparison tool. In addition to performing serialization,
the library automatically converts the execution plans into a canonical abstract
version that is supported by our GUI. PIPE currently supports FedX [6], Hi-
BISCuS [4], Odyssey [3], SemaGrow [1], and SPLENDID [2].

SELECT DISTINCT * WHERE {
?film dbo:director ?director . (tp1)
?film rdf:type dbo:Film . (tp2)
?movie owl:sameAs ?film . (tp3)
?movie movie:film_subject film_subject :444 . (tp4)
?movie dcterms:title ?title (tp5)

}

Listing 1.1. Q1: find the time travel film’s directors (subject 444)

3 Processing Federated SPARQL Queries

Consider query Q1 (Listing 1.1), which asks for directors of time travel films,
and a federation of SPARQL endpoints composed of ChEBI, KEGG, Drugbank,
Geonames, DBpedia, Jamendo, NYTimes, SWDF, and LMDB. The execution
plans computed by PIPE’s currently supported federated query engines are de-
picted in Fig. 2. FedX, HiBISCuS, SemaGrow, and SPLENDID identify eight
endpoints as relevant for tp3 because there is at least one triple in each of these
endpoints that has the same predicate as tp3, i.e., owl:same. Even if these en-
gines select the same sources for all the triple patterns, SemaGrow computes a
considerably better execution plan at the tradeoff of spending more time during
planning (Fig. 3 (b)). Semagrow relies on voiD statistics to correctly estimate
that tp4 is the most selective triple pattern, and as such, it is better to execute
tp4 first. FedX and HiBISCuS rely solely on heuristics to assess selectivity, e.g.,
tp1 and tp2 are identified as the most selective triple patterns because they
can be executed exclusively by one endpoint. Similarly to SemaGrow, Odyssey
relies on statistics to identify that tp4 is the most selective triple pattern. Dif-
ferently from SemaGrow, Odyssey uses its federated statistics to identify that
from all the endpoints that could be relevant for tp3 and tp5, only LMDB has
triples that describe entities that also have the property used as predicate in the
triple pattern tp4, and therefore is the only one that is actually relevant for the

1 http://rdf4j.org

http://rdf4j.org

execution of this query. A video of PIPE and its functionality is available at
http://qweb.cs.aau.dk/pipe.

Fig. 2. Execution plans for Q1

4 Demonstration

At the conference, PIPE will be used to compare state-of-the-art federated query
engines: FedX [6], HiBISCuS [4], Odyssey [3], SemaGrow [1], and SPLENDID [2].

Conference attendees will be able to formulate arbitrary SPARQL queries
if they are experts or use the simple query interface to compose a basic graph
pattern component by component. Moreover, users can choose a predefined query
among the 25 queries defined in the FedBench benchmark [5] and focus on using
PIPE to study how diverse the produced execution plans and their impact on
the engines’ performances are.

For the purposes of the demonstration, a federation of nine SPARQL end-
points as defined in the General Linked Open Data Collection and the Life
Science Data Collection of the FedBench benchmark [5] will be available locally
to avoid any network connectivity issues during the demonstration.

Figure 3 shows PIPE’s GUI following the execution of Q1 (Fig. 3(a)). It shows
the performance of the engines that did not time out after 180s (Fig. 3(b)) using
a logarithmic scale on the vertical axis (Fig. 3(c)). Using PIPE’s GUI, conference
attendees can also choose to look at the execution plans (as shown in Fig. 2) by

http://qweb.cs.aau.dk/pipe

Fig. 3. Performance of the federated query engines for Q1

clicking on “PLANS” (Fig. 3(d)) or examine the query answers by clicking on
“TUPLES” (Fig. 3(e)). The analysis of Q1 is saved to the browser’s local storage
after giving it a name (Fig. 3(f)).

5 Conclusion

In this paper, we have presented PIPE, a tool for comparing federated query
engines in terms of performance, computed execution plans, and query answers.
PIPE allows for inspecting the query optimization result, i.e., the execution
plans, and in many cases, it allows for explaining the huge differences observable
in terms of execution time. Notably, PIPE allows to assess how diverse the
query execution plans produced by the federated query engines are. Currently,
the query execution plans represent the operations as logical operators; as part
of our future work, we plan to also depict physical operators. In addition, we plan
to introduce additional performance measures, such as the number of requests
made to the endpoints and the amount of transferred data.

Acknowledgments. This research was partially funded by the Danish Council
for Independent Research (DFF) under grant agreement no. DFF-4093-00301B
and Aalborg University’s Talent Programme.

References

1. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: Optimizing
Federated SPARQL queries. In: SEMANTICS’15. pp. 121–128 (2015)

2. Görlitz, O., Staab, S.: SPLENDID: SPARQL Endpoint Federation Exploiting VOID
Descriptions. In: COLD’11 (2011)

3. Montoya, G., Skaf-Molli, H., Hose, K.: The Odyssey Approach for Optimizing Fed-
erated SPARQL Queries. In: ISWC’17. pp. 471–489 (2017)

4. Saleem, M., Ngomo, A.N.: HiBISCuS: Hypergraph-Based Source Selection for
SPARQL Endpoint Federation. In: ESWC’14. pp. 176–191 (2014)

5. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench:
A Benchmark Suite for Federated Semantic Data Query Processing. In: ISWC’11.
pp. 585–600 (2011)

6. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization
Techniques for Federated Query Processing on Linked Data. In: ISWC’11. pp. 601–
616 (2011)

	How diverse are federated query execution plans really?

