Skip to main content

Simulations for Multi-Agent Systems with Imperfect Information

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11852))

Included in the following conference series:

  • 885 Accesses

Abstract

Equivalence-checking and simulations are well-known methods used to reduce the size of a system in order to verify it more efficiently. While Alur et al. proposed a notion of simulation sound and complete for ATL as early as 1998, there have been very few works on equivalence-checking performed on extensions of ATL* with probabilities, imperfect information, counters etc. In the case of multi-agent systems (MASs) with imperfect information, the lack of sound and complete algorithm mostly follows from the undecidability of ATL model-checking. However, while ATL is undecidable overall, there exist sub-classes of MASs for which ATL becomes decidable. In this paper, we propose a notion of simulation sound for ATL/ATL* on any MASs and complete on naive MASs. Using our simulations we design an equivalence-checking algorithm sound and complete for MASs with public actions.

Supported by the National Natural Science Foundation of China (61672229, 61832015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Continuing the tradition in multi-agent systems with the exception of the initial paper on alternating refinement relations [3].

References

  1. de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: Proceedings of LICS 2000 (2000)

    Google Scholar 

  2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 23–60. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-5_2

    Chapter  Google Scholar 

  3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055622

    Chapter  Google Scholar 

  4. Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting protocols. In: Proceedings of TARK 2007 (2007)

    Google Scholar 

  5. Belardinelli, F., Condurache, R., Dima, C., Jamroga, W., Jones, A.V.: Bisimulations for verifying strategic abilities with an application to ThreeBallot. In: Proceedings of AAMAS 2017 (2017)

    Google Scholar 

  6. Belardinelli, F., Lomuscio, A., Murano, A., Rubin, S.: Verification of multi-agent systems with imperfect information and public actions. In: Proceedings AAMAS 2017. International Foundation for Autonomous Agents and Multiagent Systems (2017)

    Google Scholar 

  7. Berthon, R., Maubert, B., Murano, A., Rubin, S., Vardi, M.Y.: Strategy logic with imperfect information. In: Proceedings of LICS 2017, pp. 1–12 (2017)

    Google Scholar 

  8. Berwanger, D., Mathew, A.B., van den Bogaard, M.: Hierarchical information and the synthesis of distributed strategies. Acta Informatica 55, 669–701 (2018)

    Article  MathSciNet  Google Scholar 

  9. Blackburn, P., Rijke, M.D., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Chatterjee, K., Doyen, L.: The complexity of partial-observation parity games. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-8_1

    Chapter  Google Scholar 

  11. Dima, C., Tiplea, F.L.: Model-checking ATL under imperfect information and perfect recall semantics is undecidable. CoRR (2011)

    Google Scholar 

  12. Goltz, U., Kuiper, R., Penczek, W.: Propositional temporal logics and equivalences. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 222–236. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0084794

    Chapter  Google Scholar 

  13. Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of alternating-time temporal logic. Theor. Comput. Sci. 353, 93–117 (2006)

    Article  MathSciNet  Google Scholar 

  14. Jamroga, W., Dix, J.: Model checking abilities under incomplete information is indeed delta2-complete. In: Proceedings of EUMAS 2006 (2006)

    Google Scholar 

  15. Laroussinie, F., Markey, N., Oreiby, G.: On the expressiveness and complexity of ATL. In: Seidl, H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 243–257. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71389-0_18

    Chapter  MATH  Google Scholar 

  16. Laroussinie, F., Markey, N., Sangnier, A.: ATLsc with partial observation. In: Proceedings of GandALF 2015 (2015)

    Google Scholar 

  17. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94, 1–28 (1991)

    Article  MathSciNet  Google Scholar 

  18. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19, 9–30 (2017)

    Article  Google Scholar 

  19. van der Meyden, R., Vardi, M.Y.: Synthesis from knowledge-based specifications. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 34–49. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055614

    Chapter  Google Scholar 

  20. van der Meyden, R., Wilke, T.: Synthesis of distributed systems from knowledge-based specifications. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 562–576. Springer, Heidelberg (2005). https://doi.org/10.1007/11539452_42

    Chapter  Google Scholar 

  21. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: Proceedings of FOCS 1979 (1979)

    Google Scholar 

  22. Strauss, C.: A critical review of the triple ballot voting system, part2: cracking the triple ballot encryption (2006)

    Google Scholar 

  23. Tabatabaei, M., Jamroga, W., Ryan, P.Y.: Expressing receipt freeness and coercion-resistance in logics of strategic ability preliminary attempt. In: Proceedings of PrAISe 2016 (2016)

    Google Scholar 

  24. VAS-Group. In: Imperial college of London. https://vas.doc.ic.ac.uk/software/mcmas/

  25. Wikipedia: Three ballot voting system. https://en.wikipedia.org/wiki/threeballot

  26. Zhang, C., Pang, J.: On probabilistic alternating simulations. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IAICT, vol. 323, pp. 71–85. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15240-5_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Gardy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gardy, P., Deng, Y. (2019). Simulations for Multi-Agent Systems with Imperfect Information. In: Ait-Ameur, Y., Qin, S. (eds) Formal Methods and Software Engineering. ICFEM 2019. Lecture Notes in Computer Science(), vol 11852. Springer, Cham. https://doi.org/10.1007/978-3-030-32409-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32409-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32408-7

  • Online ISBN: 978-3-030-32409-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics