Skip to main content

Task Demand Transition Rates of Change Effects on Mental Workload Measures Divergence

  • Conference paper
  • First Online:
Book cover Human Mental Workload: Models and Applications (H-WORKLOAD 2019)

Abstract

Mental workload is a complex construct that may be indirectly inferred from physiological responses, as well as subjective and performance ratings. Since the three measures should reflect changes in task-load, one would expect convergence, yet divergence between the measures has been reported. A potential explanation could be related to the differential sensitivity of mental workload measures to rates of change in task-load transitions: some measures might be more sensitive to change than the absolute level of task demand. The present study aims to investigate whether this fact could explain certain divergences between mental workload measures. This was tested by manipulating task-load transitions and its rate of change over time during a monitoring experiment and by collecting data on physiological, subjective, and performance measures. The results showed higher pupil size and performance measure sensitivity to abrupt task-load increases: sensitivity to rates of change could partially explain mental workload dissociations and insensitivities between measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pape, A.M., Wiegmann, D.A., Shappell, S.A.: Air traffic control (ATC) related accidents and incidents: A human factors analysis (2001)

    Google Scholar 

  2. Reuters: What We Know About the Deadly Aeroflot Superjet Crash Landing, 6th May 2019. https://www.themoscowtimes.com/2019/05/06/what-we-know-about-the-deadly-aeroflot-superjet-crash-landing-a65495

  3. Byrne, A.J., Sellen, A.J., Jones, J.G.: Errors on anaesthetic record charts as a measure of anaesthetic performance during simulated critical incidents. Br. J. Anaesth. 80(1), 58–62 (1998)

    Article  Google Scholar 

  4. Byrne, A.: Measurement of mental workload in clinical medicine: a review study. Anesth. Pain Med. 1(2), 90 (2011). https://doi.org/10.5812/kowsar.22287523.2045

    Article  Google Scholar 

  5. Young, M.S., Stanton, N.A.: Attention and automation: new perspectives on mental underload and performance. Theor. Issues Ergon. Sci. 3(2), 178–194 (2002). https://doi-org.ezproxy.ub.unimaas.nl/10.1080/14639220210123789

    Article  Google Scholar 

  6. Endsley, M.R.: From here to autonomy: lessons learned from human–automation research. Hum. Factors 59(1), 5–27 (2017). https://doi-org.ezproxy.ub.unimaas.nl/10.1177%2F0018720816681350

    Article  Google Scholar 

  7. Zoer, I., Ruitenburg, M.M., Botje, D., Frings-Dresen, M.H.W., Sluiter, J.K.: The associations between psychosocial workload and mental health complaints in different age groups. Ergonomics 54(10), 943–952 (2011). https://doi.org/10.1080/00140139.2011.606920

    Article  Google Scholar 

  8. Kawada, T., Ooya, M.: Workload and health complaints in overtime workers: a survey. Arch. Med. Res. 36(5), 594–597 (2005). https://doi-org.ezproxy.ub.unimaas.nl/10.1016/j.arcmed.2005.03.048

    Article  Google Scholar 

  9. Cain, B.: A review of the mental workload literature. Defence Research and Development Toronto (Canada) (2007)

    Google Scholar 

  10. Meshkati, N., Hancock, P.A. (eds.): Human Mental Workload, vol. 52. Elsevier, Amsterdam (1988)

    Google Scholar 

  11. Moray, N. (ed.): Mental Workload: Its Theory and Measurement, vol. 8. Springer, New York (1979). https://doi.org/10.1007/978-1-4757-0884-4

    Book  Google Scholar 

  12. Kantowitz, B.H.: Attention and mental workload. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 44, no. 21, pp. 3–456, July 2000. https://doi-org.ezproxy.ub.unimaas.nl/10.1177%2F154193120004402121

    Article  Google Scholar 

  13. Wickens, C.D.: Multiple resources and mental workload. Hum. Factors 50(3), 449–455 (2008). https://doi.org/10.1518/001872008X288394

    Article  Google Scholar 

  14. Wickens, C.D.: Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3(2), 159–177 (2002). https://doi.org/10.1518/001872008x288394. 2008 50:449

    Article  Google Scholar 

  15. Munoz-de-Escalon, E., Canas, J.: Online measuring of available resources. In: H-Workload 2017: The First International Symposium on Human Mental Workload, Dublin Institute of Technology, Dublin, Ireland, 28–30 June (2017). https://doi.org/10.21427/d7dk96

  16. Muñoz-de-Escalona, E., Cañas, J.J.: Latency differences between mental workload measures in detecting workload changes. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2018. CCIS, vol. 1012, pp. 131–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14273-5_8

    Chapter  Google Scholar 

  17. Durantin, G., Gagnon, J.F., Tremblay, S., Dehais, F.: Using near infrared spectroscopy and heart rate variability to detect mental overload. Behav. Brain Res. 259, 16–23 (2014). https://doi.org/10.1016/j.bbr.2013.10.042

    Article  Google Scholar 

  18. Young, M.S., Stanton, N.A.: Malleable attentional resources theory: a new explanation for the effects of mental underload on performance. Hum. Factors 44(3), 365–375 (2002). https://doi.org/10.1518/0018720024497709

    Article  Google Scholar 

  19. Byrne, A.J., et al.: Novel method of measuring the mental workload of anaesthetists during clinical practice. Br. J. Anaesth. 105(6), 767–771. https://doi.org/10.1093/bja/aep268

    Article  Google Scholar 

  20. Hancock, P.A.: Whither workload? Mapping a path for its future development. In: Longo, L., Leva, M.Chiara (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_1

    Chapter  Google Scholar 

  21. Yeh, Y.Y., Wickens, C.D.: Dissociation of performance and subjective measures of workload. Hum. Factors 30(1), 111–120 (1988). https://doi-org.ezproxy.ub.unimaas.nl/10.1177%2F001872088803000110

    Article  Google Scholar 

  22. Edwards, T., Martin, L., Bienert, N., Mercer, J.: The relationship between workload and performance in air traffic control: exploring the influence of levels of automation and variation in task demand. In: Longo, L., Leva, M. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 120–139. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_8

    Chapter  Google Scholar 

  23. Helton, W.S., Shaw, T., Warm, J.S., Matthews, G., Hancock, P.: Effects of warned and unwarned demand transitions on vigilance performance and stress. Anxiety Stress Coping 21, 173–184 (2008)

    Article  Google Scholar 

  24. Cox-Fuenzalida, L.E.: Effect of workload history on task performance. Hum. Factors 49, 277–291 (2007)

    Article  Google Scholar 

  25. Santiago-Espada, Y., Myer, R.R., Latorella, K.A., Comstock Jr., J.R.: The multi-attribute task battery II (MATB-II) software for human performance and workload research: a user’s guide (2011)

    Google Scholar 

  26. Lee, J., Ahn, J.H.: Attention to banner ads and their effectiveness: an eye-tracking approach. Int. J. Electron. Commer. 17(1), 119–137 (2012). https://doi.org/10.2753/JEC1086-4415170105

    Article  Google Scholar 

  27. Brennan, S.D.: An experimental report on rating scale descriptor sets for the instantaneous self assessment (ISA) recorder. DRA Technical Memorandum (CAD5) 92017, DRA Maritime Command and Control Division, Portsmouth (1992)

    Google Scholar 

  28. Jordan, C.S.: Experimental study of the effect of an instantaneous self assessment workload recorder on task performance. DRA Technical Memorandum (CAD5) 92011. DRA Maritime Command Control Division, Portsmouth (1992)

    Google Scholar 

  29. Matthews, G., Middleton, W., Gilmartin, B., Bullimore, M.A.: Pupillary diameter and cognitive and cognitive load. J. Psychophysiol. 5, 265–271 (1991)

    Google Scholar 

  30. Backs, R.W., Walrath, L.C.: Eye movement and pupillary response indices of mental workload during visual search of symbolic displays. Appl. Ergon. 23, 243–254 (1992). https://doi.org/10.1016/0003-6870(92)90152-l

    Article  Google Scholar 

  31. Hyönä, J., Tommola, J., Alaja, A.: Pupil dilation as a measure of processing load in simultaneous interpreting and other language tasks. Q. J. Exp. Psychol. 48, 598–612 (1995). https://doi.org/10.1080/14640749508401407

    Article  Google Scholar 

  32. Granholm, E., Asarnow, R.F., Sarkin, A.J., Dykes, K.L.: Pupillary responses index cognitive resource limitations. Psychophysiology 33, 457–461 (1996). https://doi.org/10.1111/j.1469-8986.1996.tb01071.x

    Article  Google Scholar 

  33. Iqbal, S.T., Zheng, X.S., Bailey, B.P.: Task evoked pupillary response to mental workload in human-computer interaction. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 1477–1480. ACM, New York (2004). https://doi.org/10.1145/985921.986094

  34. Verney, S.P., Granholm, E., Marshall, S.P.: Pupillary responses on the visual backward masking task reflect general cognitive ability. Int. J. Psychophysiol. 52, 23–36 (2004). https://doi.org/10.1016/j.ijpsycho.2003.12.003

    Article  Google Scholar 

  35. Porter, G., Troscianko, T., Gilchrist, I.D.: Effort during visual search and counting: insights from pupillometry. Q. J. Exp. Psychol. 60, 211–229 (2007). https://doi.org/10.1080/17470210600673818

    Article  Google Scholar 

  36. Priviter, C.M., Renninger, L.W., Carney, T., Klein, S., Aguilar, M.: Pupil dilation during visual target detection. J. Vision 10, 1–14 (2010). https://doi.org/10.1167/10.10.3

    Article  Google Scholar 

  37. Reiner, M., Gelfeld, T.M.: Estimating mental workload through event-related fluctuations of pupil area during a task in a virtual world. Int. J. Psychophysiol. 93(1), 38–44 (2014)

    Article  Google Scholar 

  38. Mathôt, S., Fabius, J., Van Heusden, E., Van der Stigchel, S.: Safe and sensible preprocessing and baseline correction of pupil-size data. Behav. Res. Methods 50(1), 94–106 (2018). https://doi.org/10.3758/s13428-017-1007-2

    Article  Google Scholar 

  39. Morgan, J.F., Hancock, P.A.: The effect of prior task loading on mental workload: an example of hysteresis in driving. Hum. Factors 53(1), 75–86 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Muñoz-de-Escalona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muñoz-de-Escalona, E., Cañas, J.J., van Nes, J. (2019). Task Demand Transition Rates of Change Effects on Mental Workload Measures Divergence. In: Longo, L., Leva, M. (eds) Human Mental Workload: Models and Applications. H-WORKLOAD 2019. Communications in Computer and Information Science, vol 1107. Springer, Cham. https://doi.org/10.1007/978-3-030-32423-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32423-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32422-3

  • Online ISBN: 978-3-030-32423-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics