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Abstract

The study of Rational Secret Sharing initiated by Halpern and Teague regards the reconstruction
of the secret in secret sharing as a game. It was shown that participants (parties) may refuse to
reveal their shares and so the reconstruction may fail. Moreover, a refusal to reveal the share may
be a dominant strategy of a party.

In this paper we consider secret sharing as a sub-action or subgame of a larger action/game where
the secret opens a possibility of consumption of a certain common good. We claim that utilities
of participants will be dependent on the nature of this common good. In particular, Halpern and
Teague scenario corresponds to a rivalrous and excludable common good. We consider the case when
this common good is non-rivalrous and non-excludable and find many natural Nash equilibria. We
list several applications of secret sharing to demonstrate our claim and give corresponding scenarios.
In such circumstances the secret sharing scheme facilitates a power sharing agreement in the society.
We also state that non-reconstruction may be beneficial for this society and give several examples.

Keywords: secret sharing, common good, MPC, threshold cryptography, backup, PSMT, eco-
nomic models, game theory

1 Introduction

The classical solution of backing up data, called the secret, is to make a copy. This has the disadvantage
that when the trust in the storage facility is compromised the owner loses the privacy. The mechanical
approach of using several locks to a mechanical safe was known for a long time to researchers in combina-
torics (see e.g., Liu [20]). The combinatorial solution to the problem, being inefficient was the inspiration
40 years ago to Shamir [26] to use interpolation of polynomials to obtain a purely algebraic solution,
which, as was pointed out later [21], was equivalent to the use of the Reed-Solomon error-correction code
as an erasure code. The owner of the data, called the dealer , will give shares of the secret to partially
trusted parties. In contrast to Blakley [3], Shamir’s approach was perfect, i.e., unauthorised coalitions

∗This is a preliminary version of a paper accepted for GameSec 2019.
†Yvo Desmedt thanks the Jonsson Endowment. He is also an Honorary Professor at University College London.

1

http://arxiv.org/abs/1908.07581v1


of users would have no information, better than guessing, about the original secret. In the last 40 years
we have seen an explosion of applications of secret sharing, which are briefly surveyed in Section 2.

Halpern and Teague [16] considered the reconstruction of the secret from its shares as a game endowing
the users with greedy utilities. If some participants reveal their shares to others and others do not, the
latter may be in a position to recover the secret without those who revealed. They show that the only
Nash Equilibrium in such a game is that participants do not reveal their shares. The scenario they
considered is, figuratively speaking, the one in which the secret corresponds to a treasure map to which
several pirates have partial information about. And those who learn the secret will share the treasure
between themselves.

In this paper we will introduce new aspects (and scenarios) related to the reconstruction/use of the
secret. We in particular argue that:

• There is a variety of economic situations where secret sharing is embedded as a subgame;

• The secret usually constitutes a common good (or opens the way of producing or consuming of a
common good);

• The utilities of participants and, hence, the characteristics of the reconstruction game will depend
on the properties of the common good;

• In particular, in some scenarios the reconstruction game will have a set of natural Nash equilibria
with a number of parties revealing their shares leading to the secret recovery.

We will now survey some of the modern applications of secret sharing. We will then use these to
illustrate that in realistic situations the reconstruction of the secret corresponds to a subgame or sub-
action of a bigger game or bigger action. We will refer to these cases as Realistic Secret Sharing. In
particular, we show that secret sharing can serve as a power-sharing agreement in the society. We will
revisit the utility aspects from the above perspectives.

In this paper we do not consider secret sharing as a repeated game. In such a case cooperation in
the reconstruction stage can be reinforced by the introduction of a reputation value [23]. However, as
we discuss further, not participation in the reconstruction of the secret may be caused by reasons other
than being selfish and in sucg a case it may be beneficial for the society.

2 Modern applications of secret sharing

Cryptographers have developed a wide range of applications of secret sharing, which we will now briefly
survey.

Secure Multiparty Computation. Secure Multiparty Computation (MPC)1 introduced by Yao [29]
(see also [28]), is one of the first cryptographic uses of secret sharing. Secure Multiparty Computation
allows n parties to compute a function in n inputs (one per participant) without leaking any extra
information about the inputs. With extra we mean something that does not logically follow from the
output. Yao’s result was restricted to n = 2 and made use of an unproven cryptographic assumption. In
full, the problem was solved using secret sharing in [2]. Several follow-up papers have also used secret
sharing in this context, e.g., [14, 1].

1Sometimes the acronym SMC is used.
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Threshold cryptography. In Threshold Cryptography the secret key of a cryptosystem is shared
between a group of participants [4, 5, 9]. The topic of threshold decryption (see e.g., [7]) and threshold
signatures have received the most attention.

In threshold decryption, the secret key used to decrypt ciphertexts (encrypted messages), is shared.
In some scenarios one does not trust the receiver’s decryption device. Using multiple decryption units
and threshold decryption solves this trust issue.

Another application of threshold decryption occurs when the message is intended for a group of
people [9] and not for a single individual. An example of such a group might be a parliament, or a board
of directors. It is assumed the organisation as a whole has its own public key.

Threshold signatures prevent fraud by disabling a single party, or in general an unauthorised subset
of insiders, from signing in the name of their organisation. The organisation could be any legal body
that wants to act as a single entity having its own public key.

Perfectly Secure Message Transmission. The problem of using an unreliable network for reliable
communication is quite old and might have been the inspiration to study connectivity of networks.

The first contribution by cryptographers in this area goes back to 1993 [12]. Dolev et al. considered
that the sender and the receiver do not trust unproven cryptographic assumptions (so no public key
cryptography) and do not share a one-time pad. Despite these limitations they still want to communicate
reliably and privately. Dolev et al. considered that t nodes in a network are untrustworthy and wondered
how to communicate in such circumstances. They considered the following two scenarios: the network
has:

1. only one-way communication, or

2. only two-way communications.

Dolev et al. gave an efficient solution for the first case by using (t+1)-out-of-(3t+ 1) secret sharing and
assuming a (3t + 1)-connected network. Each of the 3t + 1 disjoint paths between sender and receiver
is used to send a share. One had to wait 25 years before an efficient solution was found for the 2nd
setting [19]. Their solution also uses secret sharing.

For surveys (partially outdated) consult [6, 11].

Multi Cloud. In 2010 IBM considered the issue that cloud servers might not be trusted, from both a
reliability and a privacy perspective [22]. Instead of having a single cloud server, they use multiple cloud
servers each receiving shares of the secret.

3 Economics underpinnings: common good and individual util-

ity

There are different models of how agents may extract some utility knowing the secret. As is usual in
economics, the utility comes from some sort of consumption of a certain good. Since the access to the
consumption comes from collaborating with others (an authorised coalition must be formed) the good
to be consumed falls under the category of common good.

The concept of the common good can be traced back to ancient Greek philosophy. Aristotle (384–322
BC) is widely regarded as a foundational thinker on this subject. In modern political economy common
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good is an outcome of a collective action of a group of individuals that brings utility that each member
of the group may enjoy. The utility is not assumed to be positive so the common good may turn out to
be a common bad. Common good is different from public good in which case all members of the society
gain (or lose) utility. The common good can be rivalrous or not and excludable or not. This classification
first appeared in the classical papers of Samuelson [24, 25].

In secret sharing the reconstruction of the secret can be done only collectively (by an authorised
coalition) and knowledge of the secret brings utility for all or some of the group members so the secret
qualifies to be a common good and Samuelson’s classification is applicable.

• The fact that the secret is rivalrous means that the less people know the secret the higher is the
individual utility of those who know it.

• The secret is non-excludable if all members of the group can (potentially) benefit from it but some,
nevertheless, may miss out (say, if they come last).

We give examples of common goods of various kinds:

• Rivalrous and excludable: buried treasure;

• Rivalrous and non-excludable: wild fish, public transport;

• Non-rivalrous and excludable: satellite television, wi-fi password;

• Non-rivalrous and non-excludable: free-to-air television.

We note that, if the reference group coincides with the whole society, then common good becomes a
public good.

4 Halpern and Teague’s Model

Halpern and Teague and followers [16, 15, 13, 17, 18] explored the rivalrous and excludable common good
framework. Given a run r in the game tree, they introduce vector info(r) to be the n-tuple (t1, t2, . . . , tn),
where ti = 1 if participant i learns the secret and ti = 0, otherwise. They assume that utilities satisfy
the following conditions:

U1. If info(r) = info(r′), then ui(r) = ui(r
′) for all i ∈ [n].

U2. If infoi(r) = 1 and infoi(r
′) = 0, then ui(r) > ui(r

′).

U3. If infoi(r) = infoi(r
′), infoj(r) ≤ infoj(r

′) for all j 6= i, and infoj0(r) < infoj0(r
′) for some j0 ∈ [n],

then ui(r) > ui(r
′).

Condition U1 means that participants’ utilities for all outcomes depend only on the information structure
at the end of the game. U2 means that under any circumstances a participant prefers to know the secret
to not knowing it. And U3 means that, if a participant learns the secret, she prefers fewer other people
know it. It also convenient to normalise utilities in such a way that, if infoi(r) = 0 for all i ∈ [n], then
ui(r) = 0 for all i ∈ [n]. U3 means that if nobody learns the secret everybody’s utility is zero but,
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if a participant does not learn the secret while another participant learns it, the utility of the former
participant will be negative.

Shoham and Tennenholtz [27] in relation to non-cooperative computation call the condition U2 cor-
rectness, which is the wish to compute the secret correctly. They also called U3 exclusivity, which is
the wish that other agents do not compute the secret correctly. They assume a lexicographic ordering
between these two, with correctness preceding exclusivity.

Thus, conditions U1-U3 represent typical greedy utilities. We note that it is exactly condition U3
that makes the secret rivalrous and excludable.

Halpern and Teague’s model deals only with the classical Shamir’s k-out-of-n access structures in
which every coalition of k participants is authorised to know the secret while any smaller coalition is
not authorised. One of the main assumptions of the model is that at any node of the game tree all
agents move simultaneously (this is called the synchronous framework). Thus, every node corresponds
to what Gordon and Katz [15] call a communication round. A move consists of disclosing to a subset of
other agents some of the information that a participant has. It is extremely important that Halpern and
Teague assume that at any node the agents may only reveal some information and receive it only after
they made their revelation or declared her refusal to do so. The authors do not specify how the game
tree is constructed and when the game ends.

Also, they seem to assume private communication channels between agents (how otherwise one can
reveal their share only to one other agent). However this assumption is dangerous. Indeed, if under
2-out-of-3 scheme, two of the participants exchange their shares in private, then they would learn the
secret while the remaining participant will not. This is a Nash equilibrium.

The class of protocols considered by Halpern and Teague requires all participants to simultaneously
disclose their shares. A participant can, however, not disclose her share deviating from the protocol.
Most of the time the action of a single participant will be inconsequential. If at most k − 2 participants
broadcast their shares, then nobody will know the secret regardless of the action of our participant. If
at least k other participants broadcast their shares, then everybody will know the secret regardless of
her action as well. An exceptional situation occurs when exactly k− 1 other participants disclosed their
shares of the secret and all the rest do not. Then a participant is better to be in the abstaining group
as then she and all the other n− k − 1 abstaining participants, will know the secret but not those k − 1
participants who disclosed their shares. As a result abstaining is a weakly dominant strategy and the
only Nash equilibrium is when everybody abstains.

Thus, the rational secret sharing scenario introduced by Halpern and Teague [16] represents some
form of prisoner’s dilemma when for each member of the group all deterministic strategies except the
strategy ‘to abstain’ are eliminated as weakly dominated by the strategy of abstaining. In this sense it
is rational for her not to participate in the recovery of the secret as she may be hoping for a free ride
and learn the secret without revealing her share. We illustrate Halpern and Teague assumptions with
the following examples.

Burried treasure. Suppose that there are n inheritors of the fortune of a bequeather who has hidden
a pot of gold in a secret location and created a k-out-of-n secret sharing scheme dividing the secret
into shares so that any k inheritors can calculate the secret. At a specified date the inheritors must
simultaneously broadcast their shares making them public or keeping them for themselves. Those
who have learned the secret will then gather at the location of the buried treasure and divide the
fortune equally between themselves.
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Secure Multiparty Computation. Secure Multiparty Computation (MPC) is a technology that al-
lows you to compute on encrypted values maintaining privacy of the inputs. Using MPC a number
of servers can jointly compute any function without learning the inputs to the function. Secret
sharing is one cryptographic tool which allows you to do MPC by splitting inputs into shares and
allow all computations be performed on shares. However, at the end, parties end up with shares of
the output and, if the output contains information leading to a rivalrous excludable common good,
Halpern-Teague impossibility can play a role in impossibility to perform the final step of MPC.

Threshold cryptography: decrypting a message. Often the sender/receiver is not an individual
but an organisation. Shamir [26] was the first to emphasise that a company’s secret key for the
purpose of digitally signing documents should not be given to a single individual. In such a case
the secret decryption key of the organisation is split by a secret sharing scheme into shares and
individuals of the organisation apply their shares on the incoming message. After which they send
the results to a trusted combiner who reconstruct the message from partial results calculated by
individual members [8, 10]. It is clear that we cannot get rid of the trusted combiner since we will
immediately find ourselves in the Halpern-Teague framework.

What Halpern and Teague have shown is that in the case of k-out-of-n access structure and deter-
ministic protocol with simultaneous moves the problem of free rider is unavoidable.

Theorem 1 (Halpern and Teague, 2003) For the k-out-of n secret sharing scheme, if utilities of
participants satisfy U1-U3, there is no deterministic synchronous protocol that will be a Nash equilibrium
of the game surviving deletion of weakly dominated strategies such that, if this protocol is followed, at the
end of the game at least one participant learns the secret.

Halpern and Teague strongly emphasised that they are working in synchronous systems and they
conjectured that in asynchronous systems there are no practical mechanisms for secret sharing or mul-
tiparty computation satisfying U1 - U3. Below is a confirmation of their hypothesis. Of course, in such
a case the type of Nash equilibrium must be the subgame perfect Nash equilibrium. In this subsection
we are still assuming U1-U3. Suppose now that:

• There is a prescribed order in which participants are supposed to be making moves;

• Each move consists in the following: at the node where a participant has to move she is disclosing
a subset of shares she knows to a subset (maybe empty) of other participants (and it is important
that she herself does not get any new information);

• The game stops as soon as one of the participants learns the secret.

Theorem 2 Suppose that participants’ utilities satisfy conditions U1 - U3. Then for any secret shar-
ing scheme there is no asynchronous protocol that is a subgame perfect Nash equilibrium of the secret
reconstruction and satisfies the following conditions:

• if this protocol is followed, the game ends in finite time, and

• at the end of the game at least one participant learns the secret.
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Proof. Finite games are usually solved by backward induction. Our game is not finite but still we can
use the idea. Suppose that there is a protocol such that if all participants follow it, the game ends with
someone knowing the secret in finite time; and that it is a subgame perfect Nash equilibrium. Suppose
that r is a run in this game ending at a terminal node e. Due to the choice of utilities, some participants
have positive payoffs (those who learned the secret) and some negative (those who did not learn it). The
crux of the matter is that the participant who made the last move, let it be participant i at node d,
cannot learn the secret since she only discloses information and cannot acquire it. As a result she gets a
negative payoff. At the same time it was exactly the information of participant i that was sufficient for
some participant to figure out the secret. So if participant i at node d discloses nothing, the game gets
into a non-terminal node. Hence not a single participant has incentive to end the game. ✷

5 A New Model of Rational Secret Sharing

Let us now deal with the non-rivalrous and non-excludable common good scenario and support it by
examples of situations which reflect this scenario. In this section we will assume that the secret sharing
scheme has an arbitrary access structure Γ with the set of minimal authorised coalitions Γmin.

Firstly, in this scenario it is important whether or not the secret is recovered (or used) at the end of
the game. If it was recovered, then the common good becomes available. Secondly, participation in the
reconstruction may incur costs that parties have to pay in some form (be it the time spent or a burden
of responsibility taken). Given a run r in the game tree, we associate with it the following parameters

info(r) = (t, s),

where t = info1(r) = 1, if the secret was recovered, and t = 0, if it was not; and s = (s1, s2, . . . , sn),
where the value si = info2,i(r) = 1 means that agent i participated in the recovery and si = 0 means
that she did not. We assume that utilities u1, u2, . . . , un of parties satisfy the following conditions:

V1. If info1(r) = 1, then ui(r) = Ni − c · info2,i(r) for all i ∈ [n];

V2. If info1(r) = 0, then ui(r) = −c · info2,i(r).

where Ni > 0 is the value of the common good for party i and c > 0 is the cost of participation in the
secret recovery.

Here are some examples.

Authorising the project. Imagine that a sufficiently authoritative group in a society, say a city coun-
cil, can launch (authorise) certain activity that will result in a public good which will be consumed
by all members of the society bringing a utility Ni to member i of the council (due to possible
corruption the utility Ni of member i could be much larger than utilities of other members). To
authorise the project one needs to gather a coalition that would be authorised to learn (or use)
the secret (say, unlocking funds for the activity). The structure of authorised coalitions is given
by an access structure Γ of a secret sharing scheme, e.g., a 2/3 majority may be needed. The
participation in the coalition, however, comes at a certain cost, say c > 0, which may come in the
form of time spent on negotiations or the responsibility for supporting the project.
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Launching a nuclear missile. In the former USSR any two of the three top state officials needed to
activate their nuclear suitcases to launch a missile. The recovery of the secret could open a possibil-
ity of creation of a public good (defeating an enemy) that all the society will consume collectively.
It also gives us a sense of the possible cost that participants can pay for their participation in
the recovery of the secret. Inevitably, many people will die as a result and resolving this moral
dilemma may be daunting. This is, by the way, why maintaining the privacy of participants (i.e.,
who actually participated in the recovery) becomes paramount.

Threshold cryptography: signing a message. If a message has to be signed on behalf of the organ-
isation, say Microsoft, the signing key is split into shares between several authorised executives
who sign the message with their shares and the combiner then transforms their results into the
message signed by the organisation [8, 10].

At this point we have to make several important observations.

1. We note that all three examples have a power sharing flavour. In all three, participants perform
as experts approving or not approving the project in the first instance or a launch of a missile
in the second and a message in the third. Unlike Halpern-Teague scenario, in such a case non-
reconstruction may be beneficial: parties do not reveal/use their shares if they suspect that their
utilities may be negative as a result, i.e., the common good may be not good at all. As a side note,
the common bad for the organisation may be actually a public good for the society (but this is not
captured by our model).

2. In all three cases the secret itself is a meaningless combination of zeros and ones and knowledge of
it has no value to participants (unless they want to engage in an illegal activity). An authorised
coalition is not aiming to recover the secret but to use it to launch certain activity. In fact, the
secret should never be recovered.

3. It is amazing how different the two main applications of threshold cryptography are. The signing
of a message on behalf of an organisation is totally different from decrypting an incoming message.
Indeed, all incoming messages should be read, hence decrypted, while for signing a harmful message
a person may be fired. Also there is no incentive to be the last signer.

We will show that the game with utilities V1,V2 has a natural set of Nash equilibria provided the
cost of participation c is not too high. Firstly, we show that the equilibria of such game are all in pure
strategies. A mixed strategy for participant i is characterised by a single non-negative number 0 ≤ αi ≤ 1
which is a probability of participant i disclosing her share in the recovery stage.

Given a Nash equilibrium, we say that a player is inessential in this Nash equilibrium, if her utility
does not depend on her strategy.

Lemma 1 In every Nash equilibrium for the game with utilities V1,V2 a player plays a pure strategy or
else this player is inessential.

Proof. The strategy of the ith member of the society is the probability αi of participating in the
recovery of the secret. Suppose that a vector of probabilities α∗ = (α1, α2, . . . , αn) is a Nash equilibrium.
Suppose for some i ∈ [n] we have 0 < αi < 1. For convenience and without loss of generality we
may assume that i = n. We look for the best responce of participant n given the tuple of strategies
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(α1, α2, . . . , αn−1), which we can therefore view as fixed. Then the expected utility of participant n, when
she uses strategy x, would be

En(x) = x · (−c) + [x · fΓ(α1, α2, . . . , αn−1) + gΓ(α1, α2, . . . , αn−1)]Nn,

where fΓ and gΓ be two functions that depend on the access structure Γ. Namely, the value fΓ(α1, α2, . . . , αn−1)
is the probability of a non-authorised coalition which is a subset of {1, . . . , n− 1} that together with n

becomes authorised; and gΓ(α1, α2, . . . , αn−1) is a probability of an authorised coalition in {1, . . . , n− 1}
without participation of n.

As we see En(x) is a linear function in x and takes its extremal values either at 0 or at 1. This
means pure strategies unless x cancels out. In such a case player n is inessential. This happens if
fΓ(α1, α2, . . . , αn−1)Nn = c. ✷

To illustrate the proof, here is the calculation of the expected utility of participant 3 in case n = 3
and 2-out-of-3 scheme:

E3(x) = x · (−c) + [x(α1(1− α2) + α2(1− α1)) + α1α2]N3.

When [α1(1−α2)+α2(1−α1)]N3 = c player 3 becomes inessential. This may be true for all three players.
This, for example, happens when 2α(1−α)N = c and N = N1 = N2 = N3, with all three players choose
strategy α.

Let X ⊆ [n], then the characteristic vector vX of the subset X is the vector for which (vX)i = 1 in
case i ∈ X and (vX)i = 0, otherwise.

Theorem 3 Suppose we have a Nash equilibrium of the game with utilities satisfying V1 and V2 such
that every player is essential. Then this Nash equilibrium is one of the vectors vX , where X is the minimal
authorised coalition of Γ such that for every i ∈ X we have Ni > c. If Γ does not have a self-sufficient
participant i with Ni > c, then the zero vector is also a Nash equilibrium. All Nash equilibria survive
deletion of weakly dominated strategies.

Proof. It is easy to see that for a partiy i with Ni < c the dominant strategy is always to abstain. By
Lemma 1 we may assume that all values of a vector of Nash equilibrium are either 0 or 1. It is easy to
see that the zero vector (in the absence of self-sufficient participants) and vectors vX for X ∈ Γmin with
Ni > c for every i ∈ X are Nash equilibria. Also vectors vY for Y ⊃ X , where X ∈ Γmin are not Nash
equilibria since some participants may change their probabilities to zero and save the amount c > 0. If
X is not in authorised and somebody is playing a non-zero strategy, then this participant can change
their probabilities to zero and be better off. This proves the theorem. ✷
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6 Conclusion

We have argued in this paper that secret sharing is used in different circumstances and there are many
realistic situations where the assumptions and conclusions of Halpern and Teague do not apply. It all
depends on the nature of the secret, and, if it opens the way for consumption of a common good, another
set of assumptions are needed leading to a range of non-trivial Nash equilibria.

In particular, we show that there is a large set of scenarios, like the threshold cryptography and
MPC, for which secrets should not be recovered but used. Indeed, in threshold signatures, the signing
key of the organisation should not be recovered. If parties want to co-sign a document, they should use
their shares to do so. Similarly in MPC, the parties should not use their shares of the inputs, but only
the shares of the output. Unlike Halpern and Teague scenario, non-participation may be beneficial and
incentives for non-recovery in such circumstances would make both threshold cryptography and MPC
more attractive to potential users.
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