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Abstract. This paper studies reinforcement learning (RL) under malicious falsi-

fication on cost signals and introduces a quantitative framework of attack models

to understand the vulnerabilities of RL. Focusing on Q-learning, we show that

Q-learning algorithms converge under stealthy attacks and bounded falsifications

on cost signals. We characterize the relation between the falsified cost and the

Q-factors as well as the policy learned by the learning agent which provides fun-

damental limits for feasible offensive and defensive moves. We propose a robust

region in terms of the cost within which the adversary can never achieve the tar-

geted policy. We provide conditions on the falsified cost which can mislead the

agent to learn an adversary’s favored policy. A numerical case study of water

reservoir control is provided to show the potential hazards of RL in learning-

based control systems and corroborate the results.

Keywords: Reinforcement Learning · Cybersecurity · Q-Learning · Deception

and Counterdeception · Adversarial Learning.

1 Introduction

Reinforcement Learning (RL) is a paradigm for making online decisions in uncertain

environment. Recent applications of RL algorithms to Cyber-Physical Systems en-

ables real-time data-driven control of autonomous systems and improves the system

resilience to failures. However, the integration of RL mechanisms also exposes CPS to

new vulnerabilities. One type of threats arises from the feedback architecture of the RL

algorithms depicted in Fig. 1. An adversary can launch a man-in-the-middle attack to

delay, obscure and manipulate the observation data that are needed for making online

decisions. This type of adversarial behavior poses a great threat to CPS. For example,

self-driving platooning vehicles can collide with each other when their observation data

are manipulated [2]. Similarly, drones can be weaponized by terrorists to create chaotic

and vicious situations where they are commanded to collide to a crowd or a building.

Hence it is imperative to understand the adversarial behaviors of RL and establish

a theoretic framework to analyze the impact of the attacks on RLs. One key aspect that

makes RL security unique is its feedback architecture which includes components of

sensing, control, and actuation as is shown in Fig. 1. These components are subject to

different types of cyber threats. For example, during the learning process, agent learns

optimal policy from sequential observations from the environment. An adversary may

http://arxiv.org/abs/1906.10571v3
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perturb the environment to deteriorate the learning results. This type of attack is called

environment attack. Agents observe the environment via their sensors. But the sensory

observation of the state may be delayed, perturbed, or falsified under malicious attacks

which are usually called sensors attack. There are also actuator attacks and attacks on

reward/cost signals. The latter refers to manipulation of the reward signal produced by

the environment in response to the actions applied by a RL agent, which can signifi-

cantly affect the learning process. Take a RL-based Unmanned Aerial Vehicle (UAV) as

an example, if the reward depends on the distance of the UAV to a desired destination

measured by GPS coordinates, spoofing of GPS signals by the adversary may result in

incorrect reward/cost signals.
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Fig. 1. Main components of a RL agent and potential attacks that can be applied to these compo-

nents.

In this paper, we study RL under malicious manipulation of cost signals from an

offensive perspective where an adversary/attacker maliciously falsifies the cost signals.

We first introduce a general formulation of attack models by defining the objectives,

information structure and the capability of an adversary. We focus our research on a

class of Q-learning algorithm and aim to address two fundamental questions. The first

one is on the impact of the falsification of cost signals on the convergence of Q-learning

algorithm. The second one is on how the RL algorithm can be misled under malicious

falsifications. We show that under stealthy attacks and bounded falsifications on the cost

signals, the Q-learning algorithm converges almost surely. If the algorithm converges,

we characterize the relationship between the falsified cost and the limit of Q-factors by

an implicit map. We show that the implicit map has several useful properties includ-

ing differentiability, Lipschitz continuity etc, which help to find fundamental limits of

adversarial behavior. In particular, from the implicit map, we study how the falsified

cost affect the policy that agents learn. We show that the map is uniformly Lipschitz
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continuous with an explicit Lipschitz constant and based on this, we characterize a ro-

bust region where the adversary can never achieve his desired policy if the falsified

cost stays in the robust region. The map is shown to be Fréchet differentiable almost

everywhere and Fréchet derivative is explicitly characterized which is independent of

the falsified cost. The map has ‘piece-wise linear’ property on a normed vector space.

The derivative and ‘piece-wise linear’ property can be utilized by the adversary to drive

the Q-factors to a desired region by falsifying cost signals properly. We show that once

the falsified cost satisfies a set of ineqialities, the RL agent can be mislead to learn the

policy manipulated by the adversary. Further, we give conditions under which the ad-

versary can attain any policy even if the adversary is only capable of falsifying the cost

at a subset of the state space. In the end, An example is presented to illustrate potential

hazards that might be caused by malicious cost falsification. The main contributions of

our paper can be summarized as follows:

1. We establish a theoretic framework to study strategic manipulation/falsifications on

cost signals in RL and present a set of attack models on RL.

2. We provide an analytical results to understand how falsification on cost singals can

affect Q-factors and hence the policies learned by RL agents.

3. We characterize conditions on deceptively falsified cost signals under which Q-

factors learned by agents can produce the policy that adversaries aim for.

4. We use a case study of water reservoir to illustrate the severe damages of insecure

RL that can be inflicted on critical infrastructures and demonstrate the need for

defense mechanisms for RL.

1.1 Related Works

Very few works have explicitly studied security issues of RL [1]. There is a large lit-

erature on adversarial machine learning, whose focus is on studying the vulnerability

of supervised learning. However, we aim to provide a fundamental understanding of

security risks of RL which is different from both supervised learning and unsupervised

learning [21]. So, there remains a need for a solid theoretic foundation on security prob-

lems of RL so that many critical applications would be safeguarded from potential RL

risks.

One area relevant to security of RL is safe RL [10], which aims to ensure that agents

learn to behave in compliance with some pre-defined criteria. The security problem,

however, is concerned with settings where an adversary intentionally seeks to compro-

mise the normal operation of the system for malicious purposes [1]. Apart from the

distinction between RL security and safe RL, the difference between RL security and

the area of adversarial RL also exists. The adversarial RL is usually studied under multi-

agent RL settings, in which agents aim to maximize their returns or minimize their cost

in competition with other agents.

There are two recent works that have studied inaccurate cost signals. In [9], Everitt

et. al. study RL for Markov Decision Process with corrupted reward channels where due

to some sensory errors and software bugs, agents may get corrupted reward at certain

states. But their focus is not on security perspectives and they look into unintentional

perturbation of cost signals. In [22], Wang et. al. have studied Q-learning with perturbed
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rewards where the rewards received by RL agents are perturbed with certain probability

and the rewards take values only on a finite set. They study unintentional cost pertur-

bation from a robust perspective other than a security perspective. Compared the two

works mentioned above, our work studies RL with falsified cost signals from a security

point of view and we develop theoretical underpinnings to characterize how the falsified

cost will deteriorate the learning result.

The falsification of cost/reward signals can be viewed as one type of deception

mechanisms. The topic of defensive deception has bee surveyed in [17], which in-

cludes a taxonomy of deception mechanisms and a review of game-theoretic models.

Game and decision-theoretic models for deception have been studied in various con-

texts [12,27], including honeypots [16,18], adversarial machine learning [25,26], mov-

ing target defense [8, 28], and cyber-physical control systems [15, 19, 20, 29]. In this

work, we extend the paradigm of cyber deception to reinforcement learning and estab-

lish a theoretical foundation for understanding the impact and the fundamental limits of

such adversarial behaviors.

1.2 Organization of the Paper

In Section 2, we present preliminaries and formulate a general framework that studies

several attack models. In Section 3, we analyze the Q-learning algorithm under adver-

sarial manipulations on cost. We study under what conditions the Q-learning algorithm

converges and where it converges to. In Section 4, we present an example to corroborate

the theoretical results and their implications in the security problems of RL.

2 Preliminaries and Problem Formulation

2.1 Preliminaries

Consider one RL agent interacts with an unknown environment and attempts to min-

imize the total of its received costs. The environment is formalized as a Markov De-

cision Process (MDP) denoted by 〈S ,A ,c,P,β 〉. The MDP {Φ(t) : t ∈ Z} takes

values in a finite state space S = {1,2, ...,S} and is controlled by a sequence of ac-

tions (sometimes called a control sequence) Z = {Z(t) : t ∈ Z} taking values in a

finite action space A = {a1, ...,aA}. Throughout this paper, we use the term action

sequence and control sequence interchangeably. In our setting, we are interested in

stationary policies where the control sequence takes the form Z(t) = w(Φ(t)), where

the feedback rule w is a function w : S → A . To emphasize the policy w, we denote

Zw = {Zw(t) := w(Φ(t)) : t ∈ Z}. According to a transition probability kernel P , the

controlled transition probabilities are given by p(i, j,a) for i, j ∈S ,a ∈A . Commonly

P is unknown to the agent.

Let c : S ×A → R be the one-step cost function, and consider the infinite hori-

zon discounted cost control problem of minimizing over all admissible Z the total dis-

counted cost J(i,Z) = E[∑∞
t=0 β tc(Φ(t),Z(t))|Φ(0) = i], where β ∈ (0,1) is the dis-

count factor. The minimal value function is defined as V (i) = minJ(i,Z), where the
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minimum is taken over all admissible control sequences Z. The function V satisfies the

dynamic programming equation [3]

V (i) = min
a

[

c(i,a)+β ∑
j

p(i, j,a)V ( j)
]

, i ∈ S

and the optimal control minimizing J is given by the stationary policy defined through

the feedback law w∗ given by w∗(i) := argmina[c(i,a)+β ∑ j p(i, j,a)V ( j)], i ∈ S . If

we define Q-values via

Q(i,a) = c(i,a)+β ∑
j

p(i, j,a)V ( j), i ∈ S ,a ∈ A ,

then V (i) = mina Q(i,a)and the matrix Q satisfies

Q(i,a) = c(i,a)+β ∑
j

p(i, j,a)min
b

Q( j,b), i ∈ S ,a ∈ A . (1)

If the matrix Q defined in (1) can be computed, e.g., using value iteration, then the

optimal control policy can be found by w∗(i) = argmina Q(i,a), i ∈S . When transition

probabilities are unknown, we can use a variant of stochastic approximation known as

the Q-learning algorithm proposed in [23]. The learning process is defined through the

recursion

Qn+1(i,a) = Qn(i,a)+ a(n)×
[

β min
b

Qn(Ψn+1(i,a),b)+ c(i,a)−Qn(i,a)
]

, (2)

i ∈ S ,a ∈ A , where Ψn+1(i,a) is an independently simulated S -valued random vari-

able with law p(i, ·,a).

Notations An indicator function 11C is defined as 11C(x) = 1 if x ∈ C, and 11C(x) = 0

otherwise. Denote 1i ∈ R
S a vector with S components whose ith component is 1 and

other components are 0. The true cost at time t is denoted by the shorthand notion

ct := c(Φ(t),Z(t)). For a mapping f : RS×A → R
S×A, define fia : RS×A → R that maps

R
S×A to R where for any Q ∈ R

S×A, we have [ f (Q)]i,a = fia(Q) and [ f (Q)]i,a is the

ith component and ath column of f (Q). The inverse of f is denoted by f−1. Given a

set V ⊂ R
S×A, f−1(V ) is referred to the set {c : f (c) ∈ V }. Denote B(c;r) := {c̃ :

‖c̃−c‖< r} an open ball in a normed vector space with radius r and center c. Here and

in later discussion, ‖ · ‖ refers to the maximum norm.

Given c ∈ R
S×A and a policy w, denote cw ∈ R

S a vector whose ith component is

c(i,w(i)) for any i ∈ S . Define ca ∈ R
S as a vector whose ith component is c(i,a).

We define Qw, Qa in the same way. For transition probability, we define Pw ∈ R
S×S

as [Pw]i, j = p(i, j,w(i)) and Pia = (p(i,1,a), p(i,2,a), ..., p(i,S,a))T ∈ R
S. Define Pa ∈

R
S×S as the matrix whose components are [Pa]i, j = p(i, j,a).

2.2 General Attack Models

Under malicious attacks, the RL agent will not be able to observe the true cost feedback

from the environment. Instead, the agent is given a cost signal that might be falsified
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by the attacker. Consider the following MDP with falsified cost (MDP-FC) denoting as

〈S ,A ,c, c̃,P,β 〉. In MDP-FC, at each time t, instead of observing ct ∈R directly, the

agent only observes a falsified cost signal denoted by c̃t ∈ R. The remaining aspects of

the MDP framework stay the same.

Attack models can be specified by three components: objective of an adversary,

actions available to the adversary, and information at his disposal. The adversary’s task

here is to design falsified cost signals c̃ based on his information structure and the

actions available to him so that he can achieve certain objectives.

Objective of Adversary: One possible objective of an adversary is to maximize the

agent’s cost while minimizing the cost of attacks. This type of objectives can be can

captured by a cost function

max
c̃

E
[ ∞

∑
t=0

β tc(Φ(t),Zw(c̃)(t))
]

−AttackCost(c̃).

The other adversarial objectives would be to drive the MDP to a targeted process or

to mislead the agent to learn certain policies the attacker aims for. Let w(c̃) denote the

policy learned by the agent under falsified cost signals c̃ and let w† denote the policy

that an attacker aims for. We can capture the objective of such a deceptive adversary by

max
c̃

11{w†}(w(c̃))−AttackCost(c̃). (3)

Here, the second term AttackCost(c̃) serves as a measure for the cost of attacking

while the first term indicates whether the agent learns the policy w† or not. We can,

for example, define AttackCost(c̃) = ∑∞
t=0 αtd(ct , c̃t), where d(·, ·) is a metric, α is a

discount factor. If d is a discrete metric, then ∑T
t=0 d(ct , c̃t) counts the number of times

of cost signals being falsified before time T . Note that here, c̃ represents all the possible

ways that an adversary can take to generate falsified signals.

Information: It is important to specify the information structure of an adversary

which determines different classes of the attacks an adversary can launch. We can cat-

egorize them as follows.

Definition 1. 1. An attacker is called an omniscient attacker if the information the

attacker has at time t, denoted by, It , is defined as

It = {P,Φ(τ),Z(τ),c : τ ≤ t}.

2. An attacker is called a peer attacker if the attacker has only access to the knowledge

of what the agent knows at time t. That means

It = {Φ(τ),Z(τ),cτ : τ ≤ t}

3. An attacker is called an ignorant attacker if at time t, he only knows the cost signals

before time t, i.e.,

It = {cτ : τ ≤ t}

4. An attacker is called a blind attacker if the information the attacker has at time t,

denoted by It , is defined as

It =∅.
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Remark 1. There are many other situations in terms of information sets of an attacker

that we can consider. In the definition of an omniscient attacker, c represents the true

cost at every state-action pair. One should differentiate it from cτ . The latter means the

true cost generated at time τ . That is to say an omniscient attack knows the true cost at

every state action pair (i,a) for all t.

Actions Available: Even if an adversary can be omniscient, it does not mean that

he can be omnipotent. The actions available to an adversary need to be defined. For

example, the attacker can only create bounded perturbations to true cost signals. In

some cases, the action of an adversary may be limited to changing the sign of the cost

at certain time or he can only falsify the cost signals at certain states in the subset

S ′ ⊂ S .

The constraints on the actions available to an attacker can also be captured by the

attack cost. The cost for the type of attacks whose actions are constrained to a subset

S ′ can be captured by the following

AttackCost(c̃) =

{

0 if c̃t = ct := c(Φ(t),Z(t)), for Φ(t) ∈ S\S̃,∀t

∞ Otherwise.

Moreover, the generation of falsified costs relies heavily on the information an at-

tacker has. If the attacker is a peer attacker or an omniscient attacker, the falsified signal

c̃ can be generated through a mapping C : S ×A ×R→R, i.e., c̃t =C(Φ(t),Z(t),ct ).
If the attacker only knows the state and the cost, c̃ can be generated by the mapping

C : S ×R→R. If the attacker is ignorant, we have C : R→R, then c̃t =C(ct).

Definition 2 (Stealthy Attacks). If c̃t takes the same value for the same state-action

pair (Φ(t),Z(t)) for all t ∈ Z, i.e., for t 6= τ , if for (Φ(t),Z(t)) = (Φ(τ),Z(τ)), we have

c̃t = c̃τ , then we say that the attacks on the cost signals are stealthy.

The definition states that the cost falsification remains consistent for the same state-

action pairs. In later discussions, we focus on stealthy attacks, which is a class of attacks

that are hard to detect. Under stealthy attackers, the falsified cost c̃ can be viewed as a

falsified cost matrix of dimension S×A. At time t, the cost received by the RL agent is

c̃(Φ(t),Z(t)).

2.3 Q-Learning with Falsified Cost

If the RL agent learns an optimal policy by Q-learning algorithm given in (2), then

under stealthy attacks on cost, the algorithm can be written as

Qn+1(i,a) = Qn(i,a)+ a(n)×
[

β min
b

Qn(Ψn+1(i,a),b)+ c̃(i,a)−Qn(i,a)
]

. (4)

Note that if the attacks are not stealthy, we need to write c̃n in lieu of c̃(i,a). There are

two important questions regarding the Q-learning algorithm with falsified cost (4): (1)

Will the sequence of Qn-factors converge? (2) Where will the sequence of Qn converge

to? We will address these two issues in next section.
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Suppose that the sequence Qn generated by the Q-learning algorithm (4) converges.

Let Q̃∗ be the limit, i.e., Q̃∗ = limn→∞ Qn. Suppose the objective of an adversary is to

induce the RL agent to learn a particular policy w†. The adversary’s problem then is to

design c̃ by applying the actions available to him based on the information he has so that

the limit Q-factors learned from the Q-learning algorithm produce the policy targeted

by the adversary w†, i.e, Q̃∗ ∈ Vw† , where

Vw := {Q ∈ R
S×A : w(i) = argmin

a
Q(i,a),∀i ∈ S }.

In next section, we will develop theoretical underpinnings to address the issues re-

garding the convergence of (4) and the attainability of the adversarial objectives.

3 Analysis of Q-Learning with Falsified Cost

3.1 Convergence of Q-Learning Algorithm with Falsified Cost

In Q-learning algorithm (2), to guarantee almost sure convergence, the agent usually

takes tapering stepsize [4] {a(n)} which satisfies 0 < a(n)≤ 1, n ≥ 0, and ∑n a(n) = ∞,

∑n a(n)2 < ∞. Suppose in our problem, the agent takes tapering stepsize. To address the

convergence issues, we have the following result.

Lemma 1. If an adversary performs stealthy attacks with bounded c̃(i,a) for all i ∈
S ,a ∈ A , then the Q-learning algorithm with falsified costs converges to the fixed

point of F̃(Q) almost surely where the mapping F̃ : RS×A →R
S×A is defined as F̃(Q) =

[F̃ia(Q)]i,a with

F̃ia(Q) = β ∑
j

p(i, j,a)min
b

Q( j,b)+ c̃(i,a),

and the fixed point is unique and denoted by Q̃∗.

Sketch of Proof. If the adversary performs stealthy attacks, the falsified costs for each

state-action pair are consistent during the learning process. The Q learning process

thus can be written as (4). Rewrite (4) as Qn+1 = Qn + a(n)
[

h̃(Qn)+M(n+ 1)
]

, where

h̃(Q) := F̃(Q)−Q and M(n+ 1) is given as

Mia(n+ 1) = β

(

min
b

Qn(Ψn+1(i,a),b)−∑
j

p(i, j,a)(min
b

Qn( j,b))

)

, i ∈ S,a ∈ A.

Note that for any Q1,Q2, h̃(Q1)− h̃(Q2) and F̃(Q1)− F̃(Q2) do not depend on the

falsified costs. If the falsified costs are bounded, one can see that h̃(Q) is Lipschitz.

And M(n + 1) is a Martingale difference sequence. Following the arguments in [4]

(Theorem 2 Chapter 2) and Section 3.2 of [5], we can see the iterates of (4) converges

almost surely to the fixed points of F̃ . Since F̃ is a contraction mapping with respect to

the max norm, with contraction factor β [3] (pp. 250), by Banach fixed point theorem

(contraction theorem), F̃ admits a unique fixed point.
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It is not surprising that one of the conditions given in Lemma 1 that guarantees

convergence is that an attacker performs stealthy attacks. The convergence can be guar-

anteed because the falsified cost signals are consistent over time for each state action

pair. The uniqueness of Q̃∗ comes from the fact that if c̃(i,a) is bounded for every

(i,a) ∈ S ×A , F̃ is a contraction mapping. By Banach’s fixed point theorem [13], F̃

admits a unique fixed point. With this lemma, we conclude that an adversary can make

the algorithm converge to a limit point by stealthily falsifying the cost signals.

Remark 2. Whether an adversary aims for the convergence of the Q-learning algorithm

(4) or not depends on his objective. In our setting, the adversary intends to mislead the

RL agent to learn policy w†, indicating that the adversary promotes convergence and

aim to have the limit point Q̃∗ lie in Vw† .

3.2 How is the Limit Point Affected by the Falsified Cost

Now it remains to analyze, from the adversary’s perspective, how to falsify the cost

signals so that the limit point that algorithm (4) converges to is desired by the adversary.

In later discussions, we consider stealthy attacks where the falsified costs are consistent

for the same state action pairs. Denote the true cost by matrix c ∈ R
S×A with [c]i,a =

c(i,a) and the falsified cost is described by a matrix c̃∈R
S×A with [c̃]i,a = c̃(i,a). Given

c̃, the fixed point of F̃ is uniquely decided, i.e., the point that the algorithm (4) converges

to is uniquely determined. Thus, there is a mapping c̃ 7→ Q̃∗ implicitly described by the

relation F̃(Q) = Q. For convenience, this mapping is denoted by f : RS×A → R
S×A.

Theorem 1. Let Q̃∗ denote the Q-factor learned from algorithm (4) with falsified cost

signals and Q∗ be the Q-factor learned from (2) with true cost signals. There exists a

constant L < 1 such that

‖Q̃∗−Q∗‖ ≤
1

1−L
‖c̃− c‖, (5)

and L = β where discounted factor β has been defined in the MDP-FC problem.

Proof. Define F̃(Q) as F̃ia(Q) = β ∑ j p(i, j,a)minb Q( j,b)+ c(i,a). From Lemma 1,

we know that Q̃∗ and Q∗ satisfy Q̃∗ = F̃(Q̃∗) and Q∗ = F(Q∗). We have Q̃∗ − Q̃ =
F̃(Q̃∗)−F(Q∗). Since F̃ and F are both contraction mappings, by triangle inequality,

we have ‖Q̃∗−Q∗‖ ≤ L‖Q̃∗−Q∗‖+ ‖c̃− c‖. Thus, we have (5). And the contraction

factor L for F̃ and F is β .

Remark 3. In fact, taking this argument just slightly further, one can conclude that fal-

sification on cost c using a tiny perturbation does not cause significant changes in the

limit point of algorithm (2), Q∗. This feature indicates that an adversary cannot cause a

significant change in the limit Q-factor by just a small perturbation in the cost signals.

This is a feature known as stability that is observed in problems that possess contraction

mapping properties. Also, Theorem 1 indicates that the mapping c̃ 7→ Q̃∗ is continuous,

and to be more specific, it is uniformly Lipchitz continuous with Lipchitz constant

1/(1−β ).
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With Theorem 1, we can now characterize the minimum level of falsification an

adversary needs to change the policy from the true optimal policy w∗ to the policy w†

that the adversary aims for. First, note that Vw ⊂ R
S×A and it can be also written as

Vw = {Q ∈ R
S×A : Q(i,w(i)) < Q(i,a),∀i ∈ S ,∀a 6= w(i)}. (6)

We can easily see that for any given policy w, Vw is a convex set, hence connected. This

is because for any λ ∈ [0,1], if Q1,Q2 ∈ Vw, λ Q1 +(1−λ )Q2 ∈ Vw. Second, for any

two different policies w1 and w2, Vw1
∩Vw2

=∅. Define the infimum distance between

the true optimal policy w∗ and the adversary desired policy w† in terms of the Q-values

by

D(w∗,w†) := inf
Q1∈Vw∗ ,Q2∈V

w†

‖Q1 −Q2‖,

which is also the definition of the distance between two sets Vw∗ and Vω† . Note that

for w∗ 6= w† (otherwise, the optimal policy w∗ is what the adversary desire, there is

no incentive for the adversary to attack), D(w∗,w†) is always zero according to the

definition of the set (6). This counterintuitive result states that a small change in the

Q-value may result in any possible change of policy learned by the agent from the

Q-learning algorithm (4). Compared with Theorem 1 which is a negative result to the

adversary, this result is in favor of the adversary.

Similarly, define the point Q∗ to set Vw† distance by DQ∗(w†) := infQ∈V
w†
‖Q−Q∗‖.

Thus, if Q̃∗ ∈ Vw† , we have

0 = D(w∗,w†)≤ DQ∗(w†)≤ ‖Q̃∗−Q∗‖ ≤
1

1−β
‖c̃− c‖, (7)

where the first inequality comes from the fact that Q∗ ∈ Vw∗ and the second inequality is

due to Q̃∗ ∈Vw† . The robust region for the true cost c to the adversary’s targeted policy

w† is given by B(c;(1− β )DQ∗(w†)) which is an open ball with center c and radius

(1−β )DQ∗(w†). That means the attacks on the cost needs to be ‘powerful’ enough to

drive the falsified cost c̃ outside the ball B(c;(1−β )DQ∗(w†)) to make the RL agent

learn the policy w†. If the falsified cost c̃ is within the ball, the RL agent can never learn

the adversary’s targeted policy w†. The ball B(c;(1−β )DQ∗(w†)) depends only on the

true cost c and the adversary desired policy w† (Once the MDP is given, Q∗ is uniquely

determined by c). Thus, we refer this ball as the robust region of the true cost c to the

adversarial policy w†. As we have mentioned in Section 2.2, if the actions available

to the adversary only allows him to perform bounded falsification on cost signals and

the bound is smaller than the radius of the robust region, then the adversary can never

mislead the agent to learn policy w†.

Remark 4. First, in discussions above, the adversary policy w† can be any possible

polices and the discussion remains valid for any possible policies. Second, set Vw of

Q-values is not just a convex set but also an open set. We thus can see that DQ∗(w†)> 0

for any w† 6= w∗ and the second inequality in (7) can be replaced by a strict inequality.

Third, the agent can estimate his own robustness to falsification if he can know the

adversary desired policy w†. For an omniscient attacker or attackers who have access

to true cost signals, the attacker can compute the robust region of the true cost to his
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desired policy w† to evaluate whether the objective is feasible or not. When it is not

feasible, the attacker can consider changing his objectives, e.g., selecting other favored

policies that have a smaller robust region.

We have discussed how falsification affects the change of Q-factors learned by the

agent in a distance sense. The problem now is to study how to falsify the true cost in a

right direction so that the resulted Q-factors fall into the favored region of an adversary.

One difficulty of analyzing this problem comes from the fact that the mapping c̃ 7→ Q̃∗

is not explicit known. The relation between c̃ and Q̃∗ is governed by the Q-learning

algorithm (4). Another difficulty is that due to the fact that both c̃ and Q̃∗ lies in the

space of RS×A, we need to resort to Fréchet derivative or Gâteaux derivative [7] (if they

exist) to characterize how a small change of c̃ results in a change in Q̃∗.

From Lemma 1 and Theorem 1, we know that Q-learning algorithm converges to

the unique fixed point of F̃ and that f : c̃ 7→ Q̃∗ is uniformly Lipschitz continuous. Also,

it is easy to see that the inverse of f , denoted by f−1, exists since given Q̃∗, c̃ is uniquely

decided by the relation F̃(Q) = Q. Furthermore, by the relation F̃(Q) = Q, we know

f is both injective and surjective and hence a bijection which can be simply shown by

arguing that given different c̃, the solution of F̃(Q) = Q must be different. This fact

informs that there is a one-to-one, onto correspondence between c̃ and Q̃∗. One should

note that the mapping f : RS×A →R
S×A is not uniformly Fréchet differentiable on R

S×A

due to the min operator inside the relation F̃(Q) = Q. However, for any policy w, f is

Fréchet differentiable on f−1(Vw) which is an open set and connected due to the fact

that Vw is open and connected and f is continuous.

Proposition 1. The map f :RS×A →R
S×A is Fréchet differentiable on Vw for any policy

w and the Fréchet derivative of f at any point c̃ ∈ Vw, denoted by f ′(c̃), is a linear

bounded map G : RS×A → R
S×A that does not depend on c̃, and Gh is given as

[Gh]i,a = β PT
ia(I−β Pw)

−1hw + h(i,a) (8)

for every i ∈ S ,a ∈ A .

Proof. Suppose c ∈ f−1(Vw) and c̃ = c+h ∈ f−1(Vw). By definition, Q∗, Q̃∗ ∈ Vw. By

Lemma 1, we have Q̃∗ = F̃(Q̃∗) and Q∗ = F(Q∗) which means

Q̃∗(i,a) = β PiaQ̃∗
w + c̃(i,a) = β PiaQ̃∗

w + c(i,a)+ h(i,a),

Q∗(i,a) = β PiaQ∗
w + c(i,a), ∀i ∈ S ,a ∈ A .

(9)

From (9), we have Q∗
w = β PwQ∗

w + cw. Thus, Q∗
w = (I − β Pw)

−1cw. Similarly, Q̃∗
w =

(I−β Pw)
−1(cw +hw), where (I−β Pw) is invertible due to the fact that β < 1 and Pw is

a stochastic matrix. Thus, Q̃∗
w =Q∗

w+(I−β Pw)
−1hw. Substitute it into the first equation

of (9), one have

Q̃∗(i,a) = β Pia(Q
∗
w +(I−β Pw)

−1hw)+ c(i,a)+ h(i,a)

= Q∗(i,a)+β Pia(I −β Pw)
−1hw + h(i,a).

Then, one can see ‖ f (c+ h)− f (c)−Gh‖/‖h‖→ 0 as ‖h‖→ 0.
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From Proposition 1, we can see that f is Fréchet differentiable on f−1(Vw) and

the derivative is constant, i.e., f ′(c̃) = G for any c̃ ∈ f−1(Vw). Note that G lies in the

space of all linear mappings that maps RS×A to itself and G is determined only by the

discount factor β and the transition kernel P of the MDP problem. The region where

the differentiability may fail is f−1(RS×A\(∪wVw)), where R
S×A\(∪wVw) is the set

{Q : ∃i,∃a = a′,Q(i,a) = Q(i,a′) = minb Q(i,b)}. This set contains the places where a

change of policy happens, i.e., Q(i,a) and Q(i,a′) are both the lowest value among the

ith row of Q. Also, due to the fact that f is Lipschitz, by Rademacher’s theorem, f is

differentiable almost everywhere (w.r.t. the Lebesgue measure).

Remark 5. One can view f as a ‘piece-wise linear function’ in the norm vector space

R
S×A instead of in a real line. Actually, if the adversary can only falsify the cost at one

state-action pair, say (i,a), while costs at other pairs are fixed, then for every j ∈S ,b ∈
A , the function c̃(i,a) 7→ [Q̃∗] j,b is a piece-wise linear function.

Given any c ∈ f−1(Vw), if an adversary falsifies the cost c by injecting value h, i.e.,

c̃ = c+ h, the adversary can see how the falsification cause a change in Q-values. To

be more specific, if Q∗ is the Q-values learned from cost c by Q-learning algorithm

(2), after the falsification c̃, the Q-value learned from Q-learning algorithm (4) becomes

Q̃∗ = Q∗+Gh if c̃ ∈ f−1(Vw). Then, an omniscient adversary can utilize (8) to find a

way of falsification h such that Q̃∗ can be driven to approach a desired set Vw† bearing

in mind that D(w,w†) = 0 for any two policies w,w†. One difficulty is to see whether

c̃ ∈ f−1(Vw) because the set f−1(Vw) is now implicit. Thus, we resort to the following

theorem.

Theorem 2. Let Q̃∗ ∈R
S×A be the Q-values learned from the Q-learning algorithm (4)

with the falsified cost c̃ ∈R
S×A. Then Q̃∗ ∈ Vw† if and only if the falsified cost signals c̃

designed by the adversary satisfy the following conditions

c̃(i,a)> (1i −β Pia)
T (I−β Pw†)−1c̃w† . (10)

for all i ∈ S , a ∈ A \{w†(i)}.

Sketch of Proof. If Q̃∗ ∈Vw† , from proof of Proposition 1, we know Q̃∗
w† =(I−β Pw†)−1c̃w†

and the ith component of Q̃∗
w† is strictly less than Q̃∗(i,a) for each a ∈A \{w†(i)}. That

means Q̃∗(i,a) > 1T
i Q̃∗

w† which gives us (10). Conversely, if c̃ satisfy conditions (10),

Q̃∗ ∈ Vw† due to the one-to-one, onto correspondence between c̃ and Q̃∗.

With the results in Theorem 2, we can characterize the set f−1(Vw). Elements in

f−1(Vw) have to satisfy the conditions given in (10). Also, Theorem 2 indicates that

if an adversary intends to mislead the agent to learn policy w†, the falsified cost c̃ has

to satisfy the conditions specified in (10). Note that for a = w†(i), c̃(i,w†(i)) ≡ (1i −
β Piw†(i))

T (I−β Pw†)−1c̃w† .

If the objective of an omnisicent attacker is to induce the agent to learn policy w†

while minimizing his own cost of attacking, i.e., the attack’s problem we have formu-

lated in (3) in Section 2.2. Given AttackCost(c̃) = ‖c̃− c‖ where c is the true cost, the

attacker’s problem is to solve the following minimization problem

min
c̃∈RS×A

‖c̃− c‖ s.t. (10) (11)
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Remark 6. If the norm in the attacker’s problem (11) is a Frobenius norm, the attacker’s

problem is a convex minimization problem which can be easily solved by omniscient

attackers using software packages like MOSEK [14], CVX [11] etc. If AttackCost(c̃) is

the number of state-action pair where the cost has been falsified, i.e.,, AttakCost(c̃) =

∑i ∑a 11{c(i,a) 6=c̃(i,a)}, then the attacker’s problem becomes a combinatorial optimization

problem [24].

Remark 7. If the actions available to an adversary only allow the adversary to falsify

the true cost at certain states S ′ ⊂ S (or/and at certain actions A ′ ⊂ A ), then the

adversary’s problem (11) becomes

min
c̃∈RS×A

‖c̃− c‖

s.t. (10)

c̃(i,a) = c(i,a) ∀i ∈ S \S ′,a ∈ A \A ′.

However, if an adversary can only falsify at certain states S ′, the adversary may not be

able to manipulate the agent to learn w†.

Without loss of generality, suppose that the adversary can only falsify the cost at a

subset of states S
′ = {1,2, ...,S′}. We rewrite the conditions given in (10) into a more

compact form:

c̃a ≥ (I−β Pa)(I −β Pw†)−1c̃w† ,∀ a ∈ A , (12)

where the equality only holds for one component of the vector, i.e., the i-th component

satisfying w(i) = a. Partition the vector c̃a and c̃w† in (12) into two parts, the part where

the adversary can falsify the cost denoted by c̃
f al
a , c̃ f al

w† ∈ R
S′ and the part where the

adversary cannot falsify ctrue
a ,ctrue

w† ∈ R
S−S′ .

[

c̃
f al
a

ctrue
a

]

≥

[

Ra Ya

Ma Na

]

[

c̃
f al

w†

ctrue
w†

]

, ∀ a ∈ A (13)

where
[

Ra Ya

Ma Na

]

:= (I−β Pa)(I −β Pw†)−1, ∀ a ∈ A

and Ra ∈ R
S′×S′ ,Ya ∈ R

S′×(S−S′),Ma ∈ R
(S−S′)×S′ ,Na ∈ R

(S−S′)×(S−S′). Note that the ith

component of c̃
f al

w†(i)
is equal to the i component of c̃

f al

w† . If the adversary aims to mislead

the agent to learn w†, the adversary needs to design c̃
f al
a ,a ∈A such that the conditions

in (13) hold. Whether the conditions in (13) are easy for an adversary to achieve or

not depends on the true costs ctrue
a ,a ∈ A . The following results state that under some

conditions on the transition probability, no matter what the true costs are, the adversary

can find proper c̃
f al
a ,a ∈ A such that conditions (13) are satisfied. For i ∈ S \S ′, if

w(i) = a, we remove the rows of Ma that correspond to the state i ∈ S \S ′. Denote the

new matrix after the row removals by M̄a.
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Theorem 3. Define H := [M̄T
a1

M̄T
a2

· · · M̄T
aA
]T ∈ R

(A(S−S′)−S′)×S′ . If there exists x ∈

R
S′ such that Hx < 0, i.e., the column space of H intersects the negative orthant of

R
A(S−S′)−S′ , then for any true cost, the adversary can find c̃

f al
a ,a ∈ A such that condi-

tions (13) hold.

Proof. We can rewrite (13) as c̃
f al
a ≥ Rac̃

f al

w† +Yactrue
w† and ctrue

a ≥ Mac̃
f al

w† +Nactrue
w† for

all a ∈ A . If there exists c̃
f al

w† such that Mac̃
f al

w† can be less than any given vector in

R
S−S′ , then ctrue

a ≥ Mac̃
f al

w† +Nactrue
w† can be satisfied no matter what the true cost is.

We need ctrue
a ≥ Mac̃

f al

w† +Nactrue
w† to hold for all a ∈ A , which means that we need the

range space of [MT
a1
, ...,MT

aA
]∈R

A(S−S′)×S′ to intersect the negative orthant. By using the

fact that c̃(i,w†(i)) ≡ (1i −β Piw†(i))
T (I −β Pw†)−1c̃w† , we can give less stringent con-

ditions. Actually, we only need the range space of H = [M̄T
a1
, ...,M̄T

aA
] ∈R

(A(S−S′)−S′)×S′

to intersection the negative orthant. If this is true, then these exists c̃
f al

w† such that

ctrue
a ≥ Mac̃

f al

w† +Nactrue
w† is feasible for all a ∈ A .

As for conditions c̃
f al
a ≥ Rac̃

f al

w† +Yactrue
w† , note that there are S′×A number of vari-

ables c̃
f al
a ,a ∈ A and that c̃

f al

w† has been chosen such that conditions ctrue
a ≥ Mac̃

f al

w† +

Nactrue
w† are satisfied. One can choose the remaining variables in c̃

f al
a ,a ∈ A sufficiently

large to satisfy ctrue
a ≥Mac̃

f al

w† +Nactrue
w† due to the fact that c̃(i,w†(i))≡ (1i−β Piw†(i))

T (I−

β Pw†)−1c̃w† .

Note that H only depends on the transition probability and the discount factor, if an

omniscient adversary can only falsify cost signals at states denoted by S ′, an adversary

can check if the range space of H intersects with the negative orthant of RA(S−S′) or not.

If it does, the adversary can mislead the agent to learn w† by falsifying costs at a subset

of state space no matter what the true cost is.

Remark 8. To check whether the condition on H is true or not, one has to resort to

Gordan’s theorem [6]: Either Hx< 0 has a solution x, or HT y= 0 has a nonzero solution

y with y ≥ 0. The adversary can use linear/convex programming software to check if

this is the case. For example, by solving

min
y∈RA(S−S′)

‖HT y‖ s.t. ‖y‖= 1, y ≥ 0, (14)

the adversary knows whether the condition about H given in Theorem 3 is true or not.

If the minimum of (14) is 0, the adversary cannot guarantee that, for any given true

cost, the agent learns the policy w†. If the minimum of (14) is positive, there exists x

such that Hx < 0. The adversary can select c̃
f al

w† = λ x and choose a sufficiently large λ
to make sure that conditions (13) hold, which means an adversary can make the agent

learn the policy w† by falsifying costs at a subset of state space no matter what the true

costs are.
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4 Numerical Example

In this section, we use the application of RL in water reservoir operations to illustrate

the security issues of RL. Consider a RL agent aiming to create the best operation

policies for the hydroelectric reservoir system described in Fig. 2. The system consists

of the following: (1) an inflow conduit regulated by Val0, which can either be a river

or a spillway from another dam; and (2) two spillways for outflow: the first penstock,

Val1, which is connected to the turbine and thus generates electricity, and the second

penstock, Val2, allowing direct water evacuation without electricity generation. We con-

sider three reservoir levels: MinOperL, MedOperL, MaxExtL. Weather conditions and

the operation of valves are key factors that affect the reservoir level. In practice, there

are usually interconnected hydroelectric reservoir systems located at different places

which makes it difficult to find an optimal operational policy.

Valve 0

Valve 1

Valve 2

Water 

Level

TurbineMax. Ext. Level

Med. Oper. Level

Min. Oper. Level

Overflow Level. Caution!

Fig. 2. A hydroelectric reservoir system.

For illustrative purposes, we only consider controlling of Val1. Thus, we have two

actions: either a1,Val1 = ‘shut down’; or a2, Val1 = ‘open’. Hence A = {a1,a2}.

We consider three states which represent three different reservoir levels, denoted by

S = {1,2,3}where 1(2,3) represents MaxExtL (MedOperL, MinOperL, respectively).

The goal of the operators is to generate more electricity to increase economic benefits,

which requires the reservoir to store a sufficient amount of water to generate electricity.

Meanwhile, the operator also aims to avoid possible overflows which can be caused by

the unexpected heavy rain in the reservoir area or in upper areas. The operator needs to

learn a safe policy, i.e., the valve needs to be open at state 1 so that the cost at c(1,a1)
needs to be high. We assume that the uncertain and intermittent nature is captured by

the transition probability given by

Pa1
=





1 0 0

0.6 0.4 0

0.1 0.5 0.4



 ,Pa2
=





0.3 0.7 0

0.1 0.2 0.7
0 0 1



 .

And the true cost is assumed to be c = [30 − 5;6 − 10;0 0]. Negative cost can be

interpreted as the reward for hydroelectric production. Let the discounted factor β be
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0.8. The limit Q-values learned from Q-learning algorithm (2) is approximately Q∗ =




8.71 −26.6129

−15.48 −27.19

−19.12 −15.30



 . The optimal policy thus is w∗(1) = a2,w
∗(2) = a2,w

∗(3) = a1.

Basically, the optimal policy indicates that one should keep the valve open to avoid

overflowing and generate more electricity at MaxExtL. While at MinOperL, one should

keep the valve closed to store more water for water supply and power generation pur-

poses. From (5), we know that the resulting change in Q∗ under malicious falsification

is bounded by the change in the cost with a Lipschitz constant 1/(1−β ). To see this,

we randomly generate 100 falsifications h ∈ R
3×2 using randi(10) * rand(3,2) in Mat-

lab. For each falsified cost c̃ = c+h, we obtain the corresponding Q-factors Q̃∗. We plot

‖Q̃∗−Q∗‖ corresponding with ‖c̃− c‖ for each falsification in Fig. 3. One can clearly

see the bound given in (5). The result in Fig. 3 corroborates Theorem 1.

0 5 10 15 20
0

20

40

60

80

100

‖c̃− c‖

‖
Q̃

⋆
−
Q

⋆
‖

 

 

Generated Costs
1

1−β
‖c̃− c‖

Fig. 3. ‖Q̃∗−Q∗‖ versus ‖c̃−c‖ with 100 falsifications.

Suppose that the adversary aims to mislead the agent to learn a policy w† where

w†(1) = a1, w†(2) = a2, w†(3) = a1. The purpose is to keep the valve shut down at

MaxExtL which will cause overflow and hence devastating consequences. The adver-

sary can utilize DQ∗(w†) to see how much at least he has to falsify the original cost c̃

to achieve the desired policy w†. The value of DQ∗(w†) can be obtained by solving the

following optimization problem:

min
Q∈R3×2

‖Q−Q∗‖

s.t. Q(1,a1)≤ Q(1,a2),Q(2,a2)≤ Q(1,a1),Q(3,a1)≤ Q(3,a2).

The value of DQ∗(w†) is thus 17.66. By (5), we know that to achieve w†, the adversary

has to falsify the cost such that ‖c̃−c‖ ≥ (1−β )DQ∗(w†) = 3.532. If the actions avail-

able to the adversary are to perform only bounded falsification to one state-action pair

with bound 3.5, then it is impossible for the adversary to attain its goal, i.e., misleading
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the agent to the policy w† targeted by the adversary. Thus, in this MDP-FC, the robust

region of c to the adversary’s desired policy w† is 3.532.
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Fig. 4. The change of the limit Q-values when only the cost at one state-action pair is altered.

Black line corresponds to state 1, red line corresponds to state 2 and green line corresponds to

state 3. Solid (dash) line corresponds to a1 (a2).

In Fig. 4, we plot the change of the limit Q-values when only the cost at one state-

action pair is falsified while the other components are fixed at c = [9 − 5;6 − 10;0 0].
We can see that when the other costs are fixed, for every j ∈ {1,2,3},b ∈ {a1,a2} the

function c̃(i,a) 7→ [Q̃∗] j,b is piece-wise linear. And the change of slope happens only

when the policy changes. This illustrates our argument about the differentiability of the

mapping c̃ 7→ Q̃∗ in Proposition 1. From the first two plots, one can see that changes in

costs at one state can deviate the policy at another state. That is when altering the cost

at MedOperL, an adversary can make the valve open at MinOperL so that the reservoir

cannot store enough water to maintain the water supply and generate electricity. When

an adversary aims to manipulate the policy at one state, he does not have to alter the cost

at this state. Fig. 5 illustrates Proposition 1 when costs corresponding to two state-action

pairs are altered.

Furthermore, to illustrate Proposition 1 in general cases, i.e., in R
3×2, suppose c =

[9 −5;6 −10;0 0], the Q-factors learned from c is Q∗ = [−12.29 −26.61; −15.47 −
27.19; −19.12 −15.30]. The optimal policy is thus w∗(1)= a2,w

∗(2)= a2,w
∗(3)= a1.

By (8) in Proposition 1, the derivative of f : R3×2 at c ∈ f−1(Vw∗) is a linearly bounded

map G : R3×2 → R
3×2

[Gh]i,a = 0.8PT
ia

(





1 0 0

0 1 0

0 0 1



− 0.8





0.3 0.7 0

0.1 0.2 0.7
0.1 0.5 0.4





)−1




h(1,a2)
h(2,a2)
h(3,a1)



+ h(i,a). (15)

One can see that G is a constant independent of c. Suppose that the adversary fal-

sifies the cost from c to c̃ by h, i.e., c̃ = c + h and h =





0.6 −0.2
1 2

0.4 0.7



. Then, Gh =
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Fig. 5. the alteration of the limit Q-values when only the costs c̃(2,1), c̃(1,1) are altered.





3.74 3.92

4.70 5.68

4.39 4.21



 by (15). Thus, c̃ = c+ h =





9.6 −5.2
7 −8

0.4 0.7



. The Q-factors learned from c̃

is Q̃∗ =





−8.55 −22.69

−10.77 −21.51

−14.73 −11.08



 . The resulting policy is still w∗. One thus can see that

Q̃∗ = Q∗+Gh.

If an adversary aims to have the hydroelectric reservoir system operate based on

a policy w†, the falsified cost c̃ has to satisfy conditions given in (10). Let the tar-

geted policy of the adversary be w†(1) = a1,w
†(2) = a2,w

†(3) = a2. If the adver-

sary can deceptively falsify the cost at every state-action pair to any value, it is not

difficult to find c̃ satisfying (10). For example, the adversary can first select c̃w† =
[c̃(1,a1) c̃(2,a2) c̃(3,a2)]

T , e.g., c̃w† = [3 2 1]T . Then select cost at other state-action

pairs following c̃(i,a) = (1i −β Pia)
T (I −β Pw†)−1c̃w† + ξ for i ∈ S ,a ∈ A \{w†(i)},

where ξ > 0. Then, c̃ satisfies conditions (10). For example if an adversary choose

ξ = 1, the adversary will have c̃ = [3 10.86;−1.34 2;0.34 1]. The Q-factors learned

from c̃ is Q̃∗ = [15 18.46;8.15 7.14;5.99 5; ]. Thus, the resulted policy is the adversary

desired policy w†. Hence, we say if the adversary can deceptively falsify the cost at

every state-action pair to any value, the adversary can make the RL agent learn any

policy.

If an adversary can only deceptively falsify the cost at states S ′, we have to resort

to Theorem 3 to see what he can achieve. Suppose that S ′ = {1,2} and the adversary

desires policy w†(1)= a1,w
†(2)= a2,w

†(3)= a2. Given S ′ and w†, (13) can be written
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as




c̃(1,a1)
c̃(2,a1)
c(3,a1)



≥





1.0000 0 0

−2.0762 0.8095 2.2667

−0.5905 −0.4762 2.0667









c̃(1,a1)
c̃(2,a2)
c(3,a2)



 ,





c̃(1,a2)
c̃(2,a2)
c(3,a2)



≥





3.5333 −0.6667 −1.8667

0 1.0000 0

0 0 1.0000









c̃(1,a1)
c̃(2,a2)
c(3,a2)



 .

(16)

Since the last row in the second equality is automatically satisfied, we have H = [−0.5906 −
0.4762] whose range space is R which intersects (−∞,0). Thus, no matter what values

c(3,a1) and c(3,a2) are, the adversary can always find c̃(1,a1), c̃(2,a2) such that

c(3,a1)> Ma1

[

c̃(1,a1)
c̃(2,a2)

]

+ 2.0667× c(3,a2).

Next, choose c̃(2,a1) and c̃(1,a2) by

c̃(2,a1)>
[

−2.0762 0.8095 2.2667
]





c̃(1,a1)
c̃(2,a2)
c(3,a2)





c̃(1,a2)>
[

3.5333 −0.6667 −1.8667
]





c̃(1,a1)
c̃(2,a2)
c(3,a2)



 .

We hence can see that no matter what the true cost is, the adversary can make the RL

agent learn w† by falsifying only the cost at sates S ′ = {1,2}. It can also be easily seen

that when the adversary can only falsify the cost at state S = {1}, he can still make the

RL agent learn the policy w† independent of the true cost.

5 Conclusion and Future Work

In this paper, a general framework has been introduced to study RL under deceptive

falsifications of cost signals where a number of attack models have been presented. We

have provided theoretical underpinnings for understanding the fundamental limits and

performance bounds on the attack and the defense in RL systems. The robust region of

the cost can be utilized by both offensive and defensive sides. A RL agent can leverage

the robust region to evaluate the robustness to malicious falsifications. An adversary can

use it to estimate whether certain objectives can be achieved or not. Conditions given

in Theorem 2 provide a fundamental understanding of the possible strategic adversarial

behavior of the adversary. Theorem 3 helps understand the attainability of an adver-

sary’s objective. Future work would focus on investigating a particular attack model we

have presented in Section 2.2 and developing defensive strategies based on the analyti-

cal tools we have introduced.
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