
Teaching Introductory Formal Methods and
Discrete Mathematics to Software Engineers:
Reflections on a modelling-focussed approach

Andrew Simpson1[0000−0003−3597−2232]

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD

United Kingdom
firstname.secondname@cs.ox.ac.uk

Abstract. Much has been written about the challenges of teaching dis-
crete mathematics and formal methods. In this paper we discuss the
experiences of delivering a course that serves as an introduction to both.
The one-week intensive course, Software Engineering Mathematics, is de-
livered as part of the University of Oxford’s Software Engineering Pro-
gramme to groups of professional software and security engineers study-
ing for master’s degrees on a part-time basis. We describe how a change in
the course’s emphasis — involving a shift towards a focus on modelling-
based group exercises — has given rise to some pleasing results.

1 Introduction

Much has been written about the difficulties of teaching discrete mathematics
and formal methods, with problems associated with ‘getting’ abstraction, student
motivation and what might be termed ‘math-phobia’ being recurring themes.
Proposed solutions include the utilisation of a ‘stealth-like’ approach [19] (“we
sneak up on our blissfully unaware students, slip a dose of formal methods into
their coursework and development environments, then with a thunderclap dis-
appear in a puff of smoke” [19]), a clear justification [29], a considered approach
to links with the rest of the curriculum [30], and a focus on modelling [4].

Our focus in this paper is a one-week intensive course, Software Engineering
Mathematics, which is delivered as part of the University of Oxford’s Software
Engineering Programme1 to groups of professional software and security engi-
neers who are studying for master’s degrees on a part-time basis. The course
aims to do two things: introduce students to formal methods and teach them
core discrete mathematics concepts (in a fashion similar to, for example, the
courses described by Warford [39] and Jaume and Laurent [18]).

Teaching part-time students who are predominantly drawn from the software
engineering industry has its advantages when compared to teaching full-time un-
dergraduate students — such students bring ‘real-world’ experience and prob-
lems to the classroom, which helps those delivering courses to make connections

1 http://www.cs.ox.ac.uk/softeng/



2 A. C. Simpson

between theory and practice, and to demonstrate potential benefits. In addition,
such students tend to be very motivated — the financial and time investments
required are, after all, significant. (The overall course costs are approximately
£25K. In addition, the students are required to spend 11 weeks in Oxford, and
commit several hundreds of hours to assignments and project work.) On the
other hand, there are complexities associated with teaching such students: the
diversity of prior academic and industrial experience, as well as a diversity of
expectations, can make for an extremely heterogeneous mix of participants. A
further challenge involves demonstrating that an appropriate application of the
techniques being taught is relevant to the students’ everyday activity — and, as
such, justifies the aforementioned investments.

Of course, the difficulty of demonstrating the ‘pay-off’ of many Computer
Science and Software Engineering tools and techniques is a challenge that has
been recognised widely. For example, to quote Finkelstein [10]:

“Software engineering is, in large part, about scale. Illuminating the
essence of a software engineering technique and motivating the students
with convincing arguments for its value, without giving examples which
are so large as to submerge the student in extraneous detail is extremely
difficult.” [10]

The philosophy of the course under consideration in this paper is sympathetic
to the view that an ‘appropriate’ and ‘within context’ application of formal
and mathematical techniques is essential to demonstrating their potential value
to professional software engineers. In many ways, this is consistent with the
argument put forward by Woodcock et al. [42]:

“One of the main difficulties in engineering is the cost-effective choice of
what to do and where. No engineer gives the same attention to all the
rivets: those below the waterline are singled out; similarly, a formalism
need not be applied in full depth to all components of an entire product
and through all stages of their development, and that is what we see in
practice.” [42]

In this paper, we show how a change to the emphasis of our Software En-
gineering Mathematics course — involving a shift towards a heavy focus on
modelling-based group exercises — has given rise to some positive results. Our
aims have much in common with those of Larsen et al., who, in [23], describe
“experiences developing and delivering courses that endeavour to equip students
with generic skills of abstraction and rigorous analysis by means of lightweight
formal methods using VDM and its support tools.” Further, our journey has
much in common with that described by Cowling [3]:

“The starting point for this experience was the approach of teaching Z as
a formal specification method, as presented in the standard textbooks.
The problem that was soon found with this approach was that these
texts did not suggest any method for constructing specifications, but
instead focused on the various mathematical constructions that could



Teaching Introductory Formal Methods and Discrete Mathematics 3

be employed in the specifications. This focus left the students feeling
a bit like the audience at a magic show, asking the question ‘where
did that bit of the specification come from’, meaning that they were
gaining little understanding of how they could actually use such methods
themselves.” [3]

In Section 2 we briefly consider related work. Then, in Section 3, we discuss
the context of the contribution. In Section 4, we reflect upon how experience led
us to the restructured version of the course that we now use. In Section 5 we
present some indicative (and caveated) results. Finally, we conclude in Section 6.

2 Related work

Our focus is a course that exists at the academic–industry interface. This is an
area covered by a number of authors, including Mead et al. [26], Fraser et al. [11],
Vaughn and Carver [38], Subrahmanyam [36], and Almi et al. [1]. In addition,
in a series of papers [13,14,28], Taguchi and colleagues discuss their experiences
of educating Software Engineering professionals in Japan.

The importance of abstraction and modelling2 to the practising software en-
gineeri is recognised widely (“We all know that the only mental tool by means of
which a very finite piece of reasoning can cover a myriad cases is called ‘abstrac-
tion’; as a result the effective exploitation of his powers of abstraction must be
regarded as one of the most vital activities of a competent programmer” [8]; see
also [7] and [40]); the difficulties of teaching abstraction and modelling is also
acknowledged by many [16,20,22]. To quote Fincher and Utting [9]:

“we know that abstraction is a very difficult step to take . . . that learners
find it difficult to grasp the principles embodied in a single example (or
a series of single examples) then isolate it as the common referent they
all share (that is, abstract from the details to the principle) and apply
that principle in novel situations.” [9]

Addressing these challenges is at the heart of this paper.
The course under consideration in this paper leverages the mathematical

language of Z [35,41], and our contribution discusses the value of case studies. It
is worth recognising that there is a rich history of Z case studies: running from
the early contributions of the likes of Hayes, Morgan and Sufrin [12,27], through
Jacky’s The Way of Z [17], to more recent contributions such as [37].

3 Context

We now consider the context of the course. We start by discussing the Software
Engineering Programme at the University of Oxford and then turn our attention
to the Software Engineering Mathematics course.

2 We would argue that, in this context, at least, the two go hand-in-hand — a ‘com-
plementary partnership’ in the words of Kramer [21].



4 A. C. Simpson

3.1 The Software Engineering Programme

The Software Engineering Programme at the University of Oxford, which was
established in the early 1980s, built on the University Oxford’s experience in
delivering one-week intensive courses to professional software engineers in, for
example, formal methods such as Z [35] and CSP [31]. An ‘integrated programme’
of six one-week modules was established in 1993; the Software Engineering Pro-
gramme now offers one-week courses in over 40 topics. The programme also
offers students the opportunity to study for MScs in Software Engineering and
Software and Systems Security on a part-time basis.

At present, approximately 300 students are registered with the Software En-
gineering Programme. Students are drawn from a wide range of backgrounds,
including large IT firms, government organisations, small companies, and the fi-
nancial sector. The programme’s requirements for entry are flexible, taking into
account prior industrial experience, as well as academic background.

The wide diversity of the student body gives rise to a number of challenges:
few assumptions can be made about the nature of previous industrial and aca-
demic experience, meaning that the complexities of teaching modelling tech-
niques are slightly different to those associated with teaching cohorts of full-time
student that are (typically) more homogeneous. Some of those complexities are
discussed in [33], and it is worth reprising those arguments here:

“The typical student on the Software Engineering Programme 20 years
ago was a relatively experienced software engineer, who had been based
in the industry for at least five years. This meant that the prior knowl-
edge that one might use in delivering courses was relatively uniform. As
an example, when teaching discrete mathematics, one might use a bi-
nary tree as a motivating example when discussing recursive functions.
Unfortunately, this is no longer true: it is not unusual to be met by blank
faces (by even those with a first degree in an IT-related subject) when
mentioning binary trees. This is for (at least) two reasons. First, the
level of abstraction has been raised: developers don’t have to define their
own tree-like structures as libraries exist that can be leveraged. Second,
the student body of the Software Engineering Programme now reflects
the healthy heterogeneity that is the workforce in software engineering,
security, and related industries.” [33]

Various aspects of the Programme have been written about previously [6,33,
34]. In addition, in [25], the authors considered the relationship between rela-
tional database design and the language of Z and explored how the relationship
between the two paradigms is exploited within the teaching of the Programme.
Finally, the use of a model-driven approach to support the Programme’s infor-
mation system (amongst others) is described in [5].

3.2 Courses and assignments

To gain a Postgraduate Certificate, a student needs to attend and submit an as-
signment for four courses (averaging at least 50% across all assignments, with no



Teaching Introductory Formal Methods and Discrete Mathematics 5

more than one scoring below 45%); to gain a Postgraduate Diploma, attendance
and subsequent submission for eight courses is required (averaging at least 50%
across all assignments, with no more than two scoring below 45%); for an MSc,
the requirement is 10 (averaging at least 50% across all assignments, with no
more than two scoring below 45%), together with the successful completion of a
dissertation.

Each course consists of: a period of preparatory study (involving, for example,
the reading of one or more research papers or book chapters and / or a small
exercise); an intensive teaching week; and a written assignment. Each teaching
week involves some combination of lectures and exercise / practical sessions.
The relatively small class sizes of up to 18 students typically lead to much
interaction between students and instructors. The take-home assignments —
which are undertaken over a period of six weeks — allow students to reflect
upon and apply the techniques taught during the week.

There are good reasons for this choice of mode of assessment. First, our
students often travel from all over the world to attend our courses; to expect
them to travel back to sit examinations would be impractical. More importantly,
a six-week period in which to undertake an assignment provides students with
an opportunity to properly reflect upon the material that was delivered during
the one-week course.

3.3 The Software Engineering Mathematics course

The course under consideration — Software Engineering Mathematics — at-
tempts to do two things. First, it attempts to teach students key aspects of
discrete mathematics — with the mathematical language of Z being the vehi-
cle of delivery. Second, it aims to show how formal models can be used to aid
comprehension and communication.

A ‘light touch approach’ (as per, for example, the philosophy of [15]) is ad-
vocated3, and a realistic view of the success of the impact of formal methods in
general (as reflected by, for example, [30] and [24]) is presented. The course text
is Using Z [41] by Woodcock and Davies; Discrete Mathematics By Example [32]
is used as a supplementary text for additional examples and exercises.

Anecdotal evidence suggests that the course is seen as ‘difficult’ by many stu-
dents: the combination of new concepts and techniques, an unfamiliar language,
and the intense pace of a week-long course makes for a challenging experience for
some students. In addition, this course is a particular victim of the disconnect
between theory and practice — while the techniques taught (thinking abstractly
and precisely) are clearly beneficial in the long term, this is not always immedi-
ately obvious to the students.

Students gain a passing grade in this subject (50%+) if they can demonstrate
that they can use the mathematical language of Z to build simple models; they

3 See [43] for a useful classification of ‘lightweight formal methods’. While Z does not
appear in the discussion, we would argue that it’s ideally suited to be used as a
‘lightweight’ method.



6 A. C. Simpson

gain a grade in the distinction range (70%+) if they can demonstrate that they
can convincingly undertake deductive and inductive proofs.

4 The approach

We now give consideration to the changes in our approach to delivering the
Software Engineering Mathematics course.

4.1 The motivation for change

As discussed in Section 3, the course text is Using Z by Woodcock and Davies [41].
Prior to the change in emphasis, the course’s timetable followed faithfully the
first 10 chapters of the book:

1. Introduction (Monday AM)
2. Propositional logic (Monday AM)
3. Predicate logic (Monday AM–Tuesday AM)
4. Equality and definite description (Tuesday PM)
5. Sets (Wednesday AM)
6. Definitions (Wednesday PM)
7. Relations (Thursday AM)
8. Functions (Thursday PM)
9. Sequences (Thursday PM–Friday AM)

10. Free types (Friday AM)

The timetable (and, relatedly, the textbook) gave rise to two main challenges
in delivering the content. First, natural deduction is at the forefront of Using
Z : natural deduction rules for conjunction, disjunction, etc. are presented at
the point at which the core logical concepts are introduced. To some students,
this presents a barrier to learning as the pace at which they learn the notions
of propositional and predicate logic is slowed due to a need to appreciate the
intricacies of natural deduction rules (and tactics). An additional consequence is
that natural deduction assumes greater importance in the minds of the students
than it perhaps deserves.

Second, while the timetable allowed for exercises that reinforced learning of
individual concepts, there wasn’t the scope to allow students to leverage the
techniques taught to actually build models: exercises simply reinforced the con-
cepts taught in the previous hour or two. Subsequently, there was evidence that,
when it came to the assignment, some students — having not had the experience
of building models during the week — had difficulty making the transition from
theory to practice.

4.2 A change in emphasis

The substantial change made was to compress and redistribute material to ensure
that all of the material required to utilise the taught techniques in a meaningful



Teaching Introductory Formal Methods and Discrete Mathematics 7

way and build models was taught by the end of Wednesday — leaving Thursday
clear for a whole day of case studies. (Friday morning was thereafter dedicated
to free types and structural induction).

The other important change (although less important in the context of this
paper) was to divorce the introduction to propositional and predicate logic
from the introduction to natural deduction. The resulting compressed timetable
looked as follows:

1. Introduction and propositional logic (Monday AM): Chapters 1 and 2 (minus
natural deduction)

2. Predicate logic, equality and definite description (Monday PM): Chapter 3
(minus natural deduction) and Chapter 4

3. Natural deduction (Tuesday AM): the remainder of Chapters 2 and 3
4. Sets and definitions (Tuesday PM–Wednesday AM): Chapters 5 and 6
5. Relations (Wednesday AM–Wednesday PM): Chapter 7
6. Functions and sequences (Wednesday PM): Chapters 8 and 9 (minus struc-

tural induction on sequences)
7. Modelling case studies (Thursday AM and PM)
8. Free types and structural induction (Friday AM): the remainder of Chapter

9 and Chapter 10

4.3 Benefits and challenges

The change gave rise to two significant benefits. First, the new structure has a
clear delineation between modelling and proof: proof techniques no longer ‘get
in the way’ when introducing new techniques. Second, the conceptually familiar
topic of sets appear significantly earlier in the week: on Tuesday afternoon, rather
than on Wednesday morning.

As well as benefits, the change gave rise to some challenges. The most signif-
icant challenge was that, in order to create the space to spend a whole day on
modelling exercises, the pace of the first three days necessarily had to be swift
in order to cover the material. Second, as there was deviation from the ‘natural
order’ of the course text, there had to be a degree of trust from the students
that the ‘postponed’ material would be covered in due course.

4.4 An example

Dedicating a whole day to modelling case studies allows students to apply the
techniques that they have been taught. The students tackle the exercises in
groups of three or four, using whiteboards. If time allows, the students utilise
LATEX and the Fuzz type-checker.

An example case study is reproduced below.

A TV recording system records television programmes to a hard-drive.
The hard-drive has the capacity to store up to 200 hours of programming;
each programme may be at most 6 hours in length.



8 A. C. Simpson

When the viewer accesses the hard-drive, they are presented with a menu
presenting all of the shows currently stored. The details are:
– title;
– programme length; and
– whether or not the programme has been viewed.

You may assume the following types and abbreviations.

[Title]
Length == N
Viewed ::= yes | no

(We shall assume that the length of recordings is represented in terms
of minutes.)
(a) Complete the following axiomatic definition with appropriate con-

straint information (“the hard-drive has the capacity to store up to
200 hours of programming; each programme may be at most 6 hours
in length”):

hd : seq (Title × Length ×Viewed)

...

The sequence hd captures information pertaining to programmes
stored on the hard-drive. (You should assume, for now, the existence
of a function cumulative total ∈ seq (Title × Length × Viewed) →
Length. This function will be defined in part (d).)

(b) Define, via set comprehension, the collection of titles of programmes
(which appear in hd) that are over two hours in length.

(c) Define functions viewed and not viewed that take sequences of type
Title × Length × Viewed , and return the sequences with the not
viewed and viewed programmes removed respectively. So,

viewed 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 =
〈(t1, 3, yes), (t2, 4, yes)〉

not viewed 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 =
〈(t1, 5,no)〉

(d) Define a recursive function, cumulative total , that takes sequences
of type Title × Length × Viewed and returns the cumulative length
of the programmes recorded. So,

cumulative total 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 = 12

(e) Give a µ-expression for the title of the longest programme that ap-
pears in hd .

(f) Define a function that maps programme titles (which appear in hd)
to cumulative lengths, i.e.,

f 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 = {t1 7→ 8, t2 7→ 4}



Teaching Introductory Formal Methods and Discrete Mathematics 9

(g) Define a function that takes a sequence of programmes and removes
the longest viewed one, i.e.,

g 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 = 〈(t1, 3, yes), (t1, 5,no)〉

(h) Define a function that takes an element of seq (Title × Length ×
Viewed) and sorts that sequence in terms of programme length—
with the longest programme appearing first. So,

s 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 =
〈(t1, 5,no), (t2, 4, yes), (t1, 3, yes)〉

Typically, such an exercise — which would take take an expert no more than
20 minutes or so to complete — will take groups of three or four between two
and three hours.

5 Indicative results

We now consider some indicative results regarding the success of the initiative.
We recognise that there are caveats here: the class sizes are small; the groups
are heterogeneous in their make up; there is an element of subjectivity in any
assessment process. However, we are able to leverage data spanning several years.

There have been 10 instances of the course using the approach described
in this paper; to compare, we also consider the final 10 instances of the course
using the former approach. We consider first student performance (in terms of
examination results) and then consider student feedback.

5.1 Student performance

As already discussed, students are assessed by way of a take-home assignment
that they have six weeks to complete.

The assessment criteria for the course are given below.

1. Propositional and predicate logic: have you understood the syntax
and semantics of propositional and predicate logic? can you write
logical statements? can you interpret logical statements? can you
reason about logical statements?

2. Equality and definitions: do you understand the notion of a type?
do you understand the different ways of introducing types, sets, and
identifiers into a formal document? do you understand the notion of
equality and its associated properties?

3. Sets, relations, functions, and sequences: do you understand the for-
mal representations of these structures? can you define such struc-
tures according to some property? can you apply the operators asso-
ciated with these structures? can you interpret a statement defined
in terms of these operators? can you reason about such statements?
can you use these structures to describe systems and properties?



10 A. C. Simpson

Table 1. Student performance

Date Submissions Min. Max. Mean Median % 50+ % 70+

2010 (iteration 1) 16 10 85 59 62.5 81.25 37.5
2010 (iteration 2) 13 35 95 61 55 84.6 23.1
2011 (iteration 1) 17 20 85 56 55 64.7 29.4
2011 (iteration 2) 12 35 80 58 57.5 83.3 16.7
2012 (iteration 1) 15 30 85 64 60 86.7 40
2012 (iteration 2) 10 20 90 61 60 90.0 30.0
2012 (iteration 3) 10 30 80 55 56.5 60.0 30.0
2013 (iteration 1) 13 20 90 63 65 84.6 38.5
2013 (iteration 2) 11 50 80 62 58 100.0 36.4
2014 (iteration 1) 13 33 94 65 60 92.3 15.4

2014 (iteration 2) 14 40 95 67 67 78.6 42.9
2015 (iteration 1) 3 55 63 60 63 100.0 0.0
2015 (iteration 2) 19 10 88 61 64 89.5 31.6
2015 (iteration 3) 16 42 80 63 66.5 81.3 43.8
2016 (iteration 1) 5 35 74 55 62 60.0 20.0
2016 (iteration 2) 15 40 88 67 67 86.7 46.7
2017 (iteration 1) 12 35 83 63 65 83.3 41.7
2017 (iteration 2) 16 35 73 58 61 81.3 12.5
2018 (iteration 1) 14 45 95 72 69 92.9 50.0
2018 (iteration 2) 14 55 90 72 71.5 100.0 50.0

Pre-change 130 10 95 60 60 82.3 35.4
Post-change 128 10 95 64 65 85.9 37.5

4. Free types: can you define a free type? have you understood the
principle of recursion? can you construct an inductive proof?

Assignments in this subject typically consist of 10 questions and follow a
similar structure each time: Question 1 is typically concerned with truth tables;
Question 2 is typically concerned with equivalence proofs; Question 3 typically
pertains to proof trees; Questions 4–8 leverage a scenario, asking the students to
write definitions and constraints, and then define sets, relations and functions.
Such questions are on a par (in terms of style and difficulty) with the case studies
discussed in Section 4. Questions 9 and 10 typically involve free type definitions
and proof by induction. The structure of the assignments was consistent across
the course instances considered in this paper.

Recall from Section 3 that students pass an assignment in this subject (scor-
ing 50%+) if they can use the mathematical language of Z to build simple models;
they gain a grade in the distinction range (70%) if they can demonstrate that
they can convincingly undertake deductive and inductive proofs.

Table 1 illustrates examination results for 20 iterations of the course: the
first 10 were delivered ‘pre-change’; the last 10 were delivered ‘post-change’.
The number of submissions, lowest score, highest score, mean score and median
score are given for each instance. The percentage of submissions scoring 50+ and
70+ respectively are also given.



Teaching Introductory Formal Methods and Discrete Mathematics 11

Table 2. Student feedback

All courses Pre-change Post-change Difference

Statement 1 4.6 4.73 4.77 0.85%
Statement 2 4.66 4.68 4.82 2.99%
Statement 3 4.41 4.38 4.59 4.79%
Statement 4 4.77 4.83 4.94 2.28%
Statement 5 4.46 4.64 4.7 1.29%
Statement 6 4.77 4.89 4.91 0.41%
Statement 7 4.75 4.84 4.85 0.21%
Statement 8 4.55 4.58 4.75 3.71%
Statement 9 4.43 4.13 4.18 1.21%
Statement 10 4.42 4.45 4.64 4.27%
Statement 11 4.44 4.38 4.61 5.25%
Statement 12 4.58 4.56 4.7 3.07%

Overall 4.57 4.59 4.71 2.61%

The bottom rows aggregate the respective scores. Curiously, the lowest and
highest grades do not differ at all. However, the mean and median scores have
improved significantly; there are slight increases in the percentages scoring 50+
and 70+.

There is one final measure that can be utilised: non-submission of assignments
by students who have attended the course. This rate has decreased slightly: from
21.2% (pre-change) to 20.0% (post-change).

There is, beyond the raw facts, little that we can conclude here. However,
the overall increase in grades is clearly a pleasing result and perhaps indicates
that, even if practice does not ‘make perfect’, it does ‘make better’.

5.2 Feedback

Following each course, students are invited to complete (anonymously) a ques-
tionnaire. The statements (scored in the range 1–5) are as follows.

1. The lectures added significant value to the course material
2. The lecturer took the time needed to explain the key concepts
3. The lectures included valuable contributions from the other students in the

class
4. The lecturer was helpful and ready to answer questions
5. The exercises helped me to understand the topics covered in the lectures
6. The lecturer or tutor was knowledgeable and encouraging
7. Help was available — from the lecturer or tutor — when I needed it
8. Issues raised were adequately addressed — through model solutions or dis-

cussion
9. I think that the techniques taught during the course will be valuable to me

in the future
10. The course was well constructed: the various components worked well to-

gether



12 A. C. Simpson

11. The course material was appropriate, and of good quality
12. The course administration was efficient and effective

While the final question is not of direct relevance to this paper, we include it
here for the sake of completeness.

In Table 2, we compare the scores per-question for pre-change and post-
change iterations. We also compare the scores with the overall scores across
all courses between mid-February 2010 (when data was first collected in this
fashion) and mid-February 2019 — giving rise to a total of 6264 completed
questionnaires.

When comparing pre-change and post-change courses, there is a positive
difference in feedback in all questions. The most significant differences can be
seen for Statements 3 (“The lectures included valuable contributions from the
other students in the class”), 8 (“Issues raised were adequately addressed —
through model solutions or discussion”), 10 (“The course was well constructed:
the various components worked well together”) and 11 (“The course material
was appropriate, and of good quality”).

Post-change, the course outperforms the average feedback with respect to all
statements, with one exception. (Pre-change, it was below the average on three
others: “The lectures included valuable contributions from the other students
in the class”, “The course material was appropriate, and of good quality” and
“The course administration was efficient and effective”.) And it is this question
— “I think that the techniques taught during the course will be valuable to
me in the future” — which, after all, motivated the changes (and, indeed, this
contribution). While the slight increase is pleasing, the feedback does, perhaps,
show that there is still some way to go in terms of demonstrating relevance to
practitioners.

6 Conclusions

In this paper we have described how we have changed the emphasis of a course
that introduces part-time students typically employed in the software engineering
industry to introductory topics from discrete mathematics and formal methods.
While our arguments for such an emphasis are not new (see, for example, [2],
in which Barr advocates helping the situation by requiring students to model
real-world implementations), we have been able to demonstrate how, via close
to a decade’s worth of data, the changes have given rise to some pleasing results.

We recognise that our experiences are somewhat unique: the nature of the
Software Engineering Programme (being targeted at professional software engi-
neers) is very different to an undergraduate programme in Computer Science;
the make-up of the class is more heterogeneous; the nature of the teaching (in
intensive one-week blocks) is different from the typical mode of delivery; and
the nature of assessment differs from what most full-time students will be used
to. However, we do think that some of the challenges faced will be familiar to
many, and, indeed, are part of the ongoing discourse with respect to the value
and applicability of modelling techniques.



Teaching Introductory Formal Methods and Discrete Mathematics 13

One clear trend over the 25+ years of the Programme’s existence is the
shift from companies funding their employees’ professional development to few
employers now being prepared to provide such support. As it is now typical for
students to ‘pay their own way’, there is an increasing need to provide evidence of
practical value. To this end, and reflecting upon the results of Section 5, future
changes will be driven by the statement “I think that the techniques taught
during the course will be valuable to me in the future”.

Acknowledgements

The author would like to thank the anonymous reviewers for their helpful and
constructive comments.

References

1. Almi, N.E.A.M., Rahman, N.A., Purusothaman, D., Sulaiman, S.: Software engi-
neering education: The gap between industry’s requirements and graduates’ readi-
ness. In: Proceedings of the IEEE Symposium on Computers and Informatics (ISCI
2011). pp. 542–547 (2011)

2. Barr, T.: Improving software engineering education by modeling real-world im-
plementations. In: Proceedings of the 8th edition of the Educators’ Symposium
(EduSymp 2012). pp. 36–39. ACM (2012)

3. Cowling, A.J.: The role of modelling in teaching formal methods for software en-
gineering. In: Bollin, A., Margaria, T., Perseil, I. (eds.) Proceedings of the 1st
Workshop on Formal Methods in Software Engineering Education and Training
(FMSEE&T 2015). CEUR Workshop Proceedings, vol. 1385 (2015)

4. Cristiá, M.: Why, how and what should be taught about formal methods? In:
Bollin, A., Margaria, T., Perseil, I. (eds.) Proceedings of the 1st Workshop on
Formal Methods in Software Engineering Education and Training (FMSEE&T
2015). CEUR Workshop Proceedings, vol. 1385 (2015)

5. Davies, J.W.M., Gibbons, J., Welch, J., Crichton, E.: Model-driven engineering of
information systems: 10 years and 1000 versions. Science of Computer Program-
ming 89, 88–104 (2014)

6. Davies, J.W.M., Simpson, A.C., Martin, A.P.: Teaching formal methods in context.
In: Dean, C.N., Boute, R.F. (eds.) Proceedings of CoLogNet / Formal Methods
Europe Symposium on Teaching Formal Methods 2004. Lecture Notes in Computer
Science, vol. 3294, pp. 186–202. Springer (2004)

7. Devlin, K.: Why universities require computer science students to take math. Com-
munications of the ACM 46(9), 37–39 (2003)

8. Dijkstra, E.W.: The humble programmer. Communications of the ACM 15(10),
859–866 (1972)

9. Fincher, S., Utting, I.: Pedagogical patterns: their place in the genre. In: Caspersen,
M.E., Joyce, D.T., Goelman, D., Utting, I. (eds.) Proceedings of the 7th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Educa-
tion, (ITiCSE 2002). pp. 199–202. ACM (June 2002)

10. Finkelstein, A.: Software engineering education: A place in the sun? In: Proceedings
of the 16th International Conference on Software Engineering (ICSE 1994). pp.
358–359. IEEE Computer Society Press (1994)



14 A. C. Simpson

11. Fraser, S., Bareiss, R., Boehm, B., Hayes, M., Hill, L., Silberman, G., Thomas, D.:
Meeting the challenge of software engineering education for working professionals
in the 21st century. In: Proceedings of the 18th Annual SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2003). pp. 262–264 (2003)

12. Hayes, I.J.: Specification Case Studies. Prentice-Hall, second edn. (1992)
13. Honiden, S., Tahara, Y., Yoshioka, N., Taguchi, K., Washizaki, H.: Top SE: Edu-

cating superarchitects who can apply software engineering tools to practical devel-
opment in Japan. In: Proceedings of the 29th International Conference on Software
Engineering (ICSE 2007). pp. 708–718. IEEE Computer Society Press (2007)

14. Ishikawa, F., Taguchi, K., Nobukazu, Y., Honiden, S.: What top-level software engi-
neers tackle after learning formal methods: Experiences from the Top SE project.
In: Gibbons, J., Oliveira, J.N. (eds.) Proceedings of the 2nd International Con-
ference on Teaching Formal Methods (TFM 2009). Lecture Notes in Computer
Science, vol. 5846, pp. 57–71. Springer (2009)

15. Jackson, D.: Lightweight formal methods. In: Oliveira, J.N., Zave, P. (eds.) Pro-
ceedings of the 2001 International Symposium of Formal Methods Europe (FME
2001). Lecture Notes in Computer Science, vol. 2021, p. 1. Springer (2001)

16. Jackson, M.: Aspects of abstraction in software development. Software and Systems
Modeling 11(4), 495–511 (2012)

17. Jacky, J.: The Way of Z: Practical Programming With Formal Methods. Cambridge
University Press (1997)

18. Jaume, M., Laurent, T.: Teaching formal methods and discrete mathematics. In:
Dubois, C., Giannakopoulou, D., Méry (eds.) Proceedings of the 1st Workshop on
Formal Integrated Development Environment (F-IDE 2014). pp. 30–43 (2014)

19. Kiniry, J.R., Zimmerman, D.M.: Secret ninja formal methods. In: Cuellar, J.,
Maibaum, T.S.E., Sere, K. (eds.) Proceedings of the 15th International Symposium
on Formal Methods (FM 2008). Lecture Notes in Computer Science, vol. 5104, pp.
214–228. Springer (2008)

20. Kramer, J.: Is abstraction the key to computing? Communications of the ACM
50(4), 36–42 (2007)

21. Kramer, J.: Abstraction and modelling — a complementary partnership. In: Czar-
necki, K., Ober, I., Bruel, J.M., Uhl, A., Völter, M. (eds.) Proceedings of the 11th
International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2008). Lecture Notes in Computer Science, vol. 5301. Springer (2008)

22. Kramer, J., Hazzan, O.: The role of abstraction in software engineering. ACM
SIGSOFT Software Engineering Notes 31(6), 38–39 (2006)

23. Larsen, P.G., Fitzgerald, J., Riddle, S.: Learning by doing: Practical courses in
lightweight formal methods using VDM+. Tech. Rep. CS-TR-992, University of
Newcastle upon Tyne (2006)

24. Mandrioli, D.: On the heroism of really pursuing formal methods: title inspired
by Dijkstra’s “On the Cruelty of Really Teaching Computing Science”. In: Pro-
ceedings of the Third FME Workshop on Formal Methods in Software Engineering
(Formalise 2015). pp. 1–5. IEEE Computer Society Press (2015)

25. Martin, A.P., Simpson, A.C.: Generalizing the Z schema calculus: Database
schemas and beyond. In: Proceedings of APSEC, 2003. pp. 28–37 (2003)

26. Mead, N.R., Ellis, H.J.C., Moreno, A., MacNeil, P.: Can industry and academia
collaborate to meet the need for software engineers? Cutter IT Journal 14(6),
32–39 (2001)

27. Morgan, C.C., Sufrin, B.A.: Specification of the UNIX filing system. IEEE Trans-
actions on Software Engineering 10(2), 128–142 (1984)



Teaching Introductory Formal Methods and Discrete Mathematics 15

28. Nishihara, H., Shinozaki, K., Hayamizu, K., Aoki, T., Taguchi, K., Kumeno, F.:
Model checking education for software engineers in Japan. SIGCSE Bulletin 41(2),
45–50 (2009)

29. Reed, J.N., Sinclair, J.E.: Motivating study of formal methods in the classroom.
In: Dean, C.N., Boute, R.T. (eds.) Proceedings of Teaching Formal Methods 2004
(TFM 2004), Lecture Notes in Computer Science, vol. 3294, pp. 32–46. Springer
(2004)

30. Robinson, K.: Embedding formal development in software engineering. In: Dean,
C.N., Boute, R.F. (eds.) Proceedings of CoLogNet / Formal Methods Europe Sym-
posium on Teaching Formal Methods 2004. Lecture Notes in Computer Science,
vol. 3294, pp. 203–213. Springer (2004)

31. Roscoe, A.W.: Understanding Concurrent Systems. Springer (2010)
32. Simpson, A.C.: Discrete Mathematics by Example. McGraw-Hill (2002)
33. Simpson, A.C., Martin, A.P., Cremers, C., Flechais, I., Martinovic, I., Rasmussen,

K.: Experiences in developing and delivering a programme of part-time education in
software and systems security. In: Proceedings of the 37th International Conference
on Software Engineering (ICSE 2015) — Volume 2. pp. 435–444. IEEE Computer
Society Press (2015)

34. Simpson, A.C., Martin, A.P., Gibbons, J., Davies, J.W.M., McKeever, S.W.: On
the supervision and assessment of part-time postgraduate software engineering
projects. In: Proceedings of the 25th International Conference on Software Engi-
neering (ICSE 2003). pp. 628–633. IEEE Computer Society Press (2003)

35. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall International,
second edn. (1992)

36. Subrahmanyam, G.V.B.: A dynamic framework for software engineering educa-
tion curriculum to reduce the gap between the software organizations and software
educational institutions. In: Proceedings of the 22nd IEEE International Confer-
ence on Software Engineering Education and Training (CSEET 2009). pp. 248–254
(2009)

37. Tarkan, S., Sazawl, V.: Chief chefs of Z to Alloy: Using a kitchen example to
teach Alloy with Z. In: Gibbons, J., Oliveira, J.N. (eds.) Proceedings of the 2nd
International Conference on Teaching Formal Methods (TFM 2009). Lecture Notes
in Computer Science, vol. 5846, pp. 72–91. Springer (2009)

38. Vaughn, R.B., Carver, J.: Position paper: The importance of experience with in-
dustry in software engineering education. In: Proceedings of the 19th IEEE In-
ternational Conference on Software Engineering Education and Training (CSEET
2006). pp. 19–19 (2006)

39. Warford, J.S.: An experience teaching formal methods in discrete mathematics.
ACM SIGCSE 27(3), 60–64 (1995)

40. Wing, J.M.: Computational thinking. Communications of the ACM 49(3), 33–35
(2006)

41. Woodcock, J.C.P., Davies, J.W.M.: Using Z: Specification, Refinement, and Proof.
Prentice Hall (1996)

42. Woodcock, J.C.P., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods:
Practice and experience. ACM Computing Surveys 41(4), Article number 19 (2009)

43. Zamansky, A., Spichkova, M., Rodriguez-Navas, G., Herrmann, P., Blech, J.O.:
Towards classification of lightweight formal methods. In: Proceedings of the 13th
International Conference on Evaluation of Novel Approaches to Software Engineer-
ing (ENASE 2013) (2018)


