
Deriving lung perfusion directly from CT image using 

deep convolutional neural network: A preliminary study 

Abstract. 

Functional avoidance radiation therapy for lung cancer patients aims to limit 

dose delivery to highly functional lung. However, the clinical functional imag-

ing suffers from many shortcomings, including the need of exogenous contrast, 

longer processing time, etc. In this study, we present a new approach to derive 

the lung functional images, using a deep convolutional neural network to learn 

and exploit the underlying functional information in the CT image and generate 

functional perfusion image. In this study, 99m Tc MAA SPECT/CT scans of 30 

lung cancer patients were retrospectively analyzed. The CNN model was 

trained using randomly selected dataset of 25 patients and tested using the re-

maining 5 subjects. Our study showed that it is feasible to drive perfusion im-

ages from CT image. Using the deep neural network with discrete labels, the 

main defect regions can be predicted. This technique holds the promise to pro-

vide lung function images for image guided functional lung avoidance radiation 

therapy.  

Keywords: Perfusion Imaging, Functional Avoidance Radiation Therapy, Deep 

Learning. 

1 Introduction 

Lung cancer is the most common occurring cancer among adults worldwide, with 

the most common cancer-related death (1.7 million in 2018) [1].  Approximately 85% 

of lung cancer patients were diagnosed with non-small cell lung cancer (NSCLC), of 

which 30%-50% were locally advanced (Stage III) NSCLC with median survival of 

29 months[3]. The standard treatment for locally advanced NSCLC is concurrent 

chemoradiotherapy, but the long-term survival is impaired by a high rate of local 

failure[4]. The clinical practice to achieve local control is dose-escalation above the 

standard 60 Gy. However, giving more dose to the functional lung would increase the 

risk of radiation-induced lung injury, which involves radiation pneumonitis in the 

acute term and pulmonary fibrosis in the long term[5].  

To avoid these side effects, functional avoidance radiation therapy for lung cancer 

patients was brought out to limit dose delivery to highly functional lung[6]. In this 

process, images with lung functional information was needed to differentiate function 

and non-function regions.  

In clinical practice, the standard test of regional lung function were ventilation and 

perfusion imaging[7]. Clinical ventilation imaging, such as 99mTc SPECT[8], 68Ga 

PET[9], and hyperpolarized 3He gas MRI[10] are generally of low accessibility for 

the radiation oncology departments, invasive techniques, high cost. Therefore, clinical 

practice of these three modalities are limited. Deriving ventilation map from 4DCT 
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deformation fields also suffer from large variance from different registration algo-

rithms[11]. 

 Perfusion SPECT/CT imaging has been commonly utilized as a predictor of pul-

monary function after surgery[12]. It also has potential for treatment planning in func-

tional lung avoidance radiation therapy. Technetium-99m-labeled macro-aggregated 

albumin (99m Tc MAA) provides a quantitative measure of regional variation in pul-

monary perfusion. Besides perfusion SPECT imaging, a more convenient method is to 

derive the perfusion map from the CT images, which is a routinely utilized for radia-

tion treatment planning. CT-based perfusion imaging does not require exogenous 

contrast anymore. This method is based on image processing of lung CT images ac-

quired during tidal breathing or breath-hold procedures, and it should be able to trans-

form CT from purely anatomic modality into one that can image and quantify lung 

perfusion. Since the CT Hounsfield Unit (HU) values is a function of the fractional 

air/tissue ratio[13], a deep learning model could hold the promise to extract the under-

lying information of translating the HU values into functional perfusion images. In the 

field of radiation therapy, deep learning-based convolutional neural network (CNN) 

has been successfully applied in low-dose CT image correction[14], MR-to-CT image 

synthesis[16], image segmentation[18], and so on. CNN has been found to be able to 

learn and exploit the underlying features that cannot be extracted by conventional 

image-processing methods[19]. CNN-based CT perfusion imaging has great promise 

to improve the toxicity outcomes of lung cancer radiation therapy by enabling perfu-

sion-guided treatment planning that minimizes irradiation of functional lung. 

This study aims to explore the feasibility of using deep neural network to derive 

perfusion-based pulmonary functional images from lung CT images. The proposed 

method utilized CNN to extract the air/tissue ratio information in the CT images and 

then used the underlying information to generate functional perfusion images. Our 

study showed that it is feasible to drive perfusion images from CT image. The per-

formance of CNN with data discretization was superior over the CNN with data re-

duction by testing on our dataset. Given the performance of the preliminary study and 

computational efficiency of this method, the proposed deep learning method could 

hold significant value for future functional avoidance radiation therapy. 

 

2 Materials and methods 

2.1 Patients And Image Acquisition 

In this study, 99mTc MAA SPECT/CT scans of 30 lung cancer patients were retrospec-

tively analyzed. The use of the scan data and waivers of onset were approved by the 

Queen Mary Hospital (Hong Kong). Patients were immobilized in the supine position 

with the normal resting breathing. Each scan covered the whole lung volume. The CT 

images were reconstructed in 512×512 matrix with 0.977×0.977 mm2 pixel spacing, 

and 1.25 mm slice spacing. The SPECT images were reconstructed in 128×128×128 

matrix with 4.42×4.42×4.42 mm3 voxel size. SPECT images were anatomically regis-

tered with the CT images.  
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2.2 Data Preprocessing  

Image Preparation. Initially, SPECT images were resampled at the CT geometry. 

We built a lung mask to represent the lung parenchyma tissue. This mask included 

voxels of CT values < -300 HU growing from the lung region, and the trachea was 

manually excluded from the lung mask. For all cases, the primary lung tumor volume 

was not included from the lung mask. The lung mask was subsequently applied on the 

SPECT and CT images to segment the parenchyma volume. The segmented images 

were further cropped to include only the lung and resized to 128×128×64 matrix to 

reduce the consumption of the computation power. For both the SPECT and CT im-

ages, a 3D median filter within a cubic region of dimension 6×6×6 (cube width ~18 

mm) was applied around each lung voxel for better feature selection.  

Data Labelling. To normalize the SPECT values in different patients, all voxels val-

ues were divided by the 90th percentile value in the lung. Voxels with value of outlier 

were set with the threshold values. Our CNN was trained to derive the low function 

regions from the processed CT images so that the normal regions can be derived. 

Hence, we first obtained the training datasets consisting of paired input and output 

data. Since the purpose of this study was to predict the non-functional lung region.  

Then, two labelling approaches were used to compare the performance of the net-

work with different processed data. For the first scenario, voxels with values over 0.5 

were excluded from the label map. The rest of the voxels were rescaled from 0 to 1. 

This method selected only a subset of the most important information from the 

SPECT images. For the second scenario, continuous values of the SPECT images 

were converted into 11 intervals with range of [0,0.1,0.2,… 1]. 

 
Fig. 1 Diagram of data preprocessing workflow. 

2.3 Neural Network Architecture 

We used a 3D U-net[20] based CNN to learn underlying information in the training 

phase and translate CT images into lung perfusion images in the testing phase. This 
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CNN includes 2 sequential paths (see Fig. 1). The contraction path, which captures 

the context in CT images, has 5 sequential layers. Each layer consists of a leaky recti-

fied linear unit (leaky ReLU) as an activation function, followed by 3×3×3 convolu-

tion for detecting features, and 2×2×2 stride convolution for down-sampling. The 

expansion path, which enables precise localization, consists of the leaky ReLU, 

3×3×3 convolution, 1×1×1 convolution, and 2×2×2 transpose convolution. The ele-

ment-wise sum array layer was also used before the Sigmoid activation function to 

sum 3×3×3 convolution results of the previous layers. The predicted values are in the 

range of [0,1]. Symmetric skip connections (copy and concatenation), as shown in 

Figure 2, was used to translate the local details captured in the feature maps from the 

contraction path into the expansion path. The dropout and early stopping were used to 

avoid overfitting. This network was implemented using the Pytorch 1.1 framework. 

 

 

 
 
Fig.  2. CNN architecture. The blue indicates the feature map. Blue arrows represent three-

dimensional (3D) convolutional layers with 3×3 filter. Red and green arrows indicate 3D max 

pooling and transposed convolution respectively. Orange arrow indicate sigmoid layer. The 

numbers on the top of the box indicate the number of channels. 

 

2.4 Network Training 

The network was trained using randomly selected dataset of 25 patients and tested 

using data from the remaining 5 subjects. Image flip was randomly applied to aug-

ment the training datasets during training. The processed CT and SPECT images were 

used for network training and validation. All the input and output datasets were in 3D 

volume format. 

The mean square error was used as the loss function. Each layer was updated using 

error back-propagation with adaptive moment estimation optimizer (ADAM). The 

loss function used in this study was binary cross entropy. The learning rate for deter-

mining to what extent the newly acquired information overrides the old information 

was initially 10E-5. The number of epochs was 10000 and each epoch includes 2 

iterations. The network was trained on one GTX 2080 TI GPU. 
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2.5 Evaluation  

The generated perfusion images were compared with the perfusion label images from 

the testing groups. In this study, the correlation coefficient (Spearman’s r) metric was 

used to compare the two images. The Spearman correlation coefficient r was defined 

using the following equation: 

 𝑟 =
∑  (𝐼𝑖−𝐼)̅(𝐼𝑖

∗−𝐼∗̅)𝑖

√∑ (𝐼𝑖−𝐼)̅2
𝑖  ∑ (𝐼𝑖

∗−𝐼∗̅)2
𝑖

 (1) 

where the notation I denotes the generated perfusion obtained using the network. I* 

denotes perfusion label. The 𝑟 values were in the range [-1,1] and represent the inten-

sity monotonicity of spatially correlated voxels. 

3 Results 

For each testing case, we calculated the correlation coefficients of scenario 1 and 

scenario 2. Table 1 shows the correlation values of the prediction and labels. The 

average correlation value of scenario 1 is 0.53, which is larger than the average of 

scenario 2. Scenario 1 and scenario 2 have the same deviation. Considering that sce-

nario 2 only predicts the functional lung regions, the correlation values is expected to 

be larger than those in scenario 1, which predicts the whole lung volume. This sug-

gests the performance of CNN with data discretization is superior over the CNN with 

data reduction by testing on our data set. The correlations between the label and pre-

diction demonstrated a moderate positive correlation for both scenarios. 

Table 1. Correlation values between predicted and label images in 5 testing cases. 

Case 1 2 3 4 5 Average ± S.D. 

Scenario 1 0.45 0.65 0.32 0.63 0.62 0.53 ± 0.14  

Scenario 2 0.18 0.43 0.37 0.51 0.42 0.39 ± 0.14 

 

We also visualized two cases for qualitative analysis using the procedure men-

tioned in scenario 1. As shown in figure 3 and 4, most regions of the defects on the 

upper lobe of right lung were correctly labelled (red arrows). These images demon-

strate good correspondence in the low/high function regions between the label and 

predicted image. For the data reduction case (Fig. 5), the defects on the lower lobe of 

right/left lung were not predicted. The result from qualitative analysis is in consistent 

with the correlation values, suggesting data discretization is superior over the data 

reduction by testing on our data set. 
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Fig. 3 Comparison of the discrete label and output of case 4 in scenario 1. All images have 

been normalized using the procedure mentioned in the method section. Red arrows indicate the 

correctly prediction. Yellow arrows indicate the incorrect prediction. 

 

 
Fig. 4 Comparison of the label and output of case 5 in scenario 1. All images have been 

normalized using the procedure mentioned in the method section. Red arrows indicate the cor-

rectly prediction. Yellow arrows indicate the incorrect prediction. 
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Fig. 5 Comparison of the reduced label and output of case 2 in scenario 2. All images have 

been normalized using the procedure mentioned in the method section. Red arrows indicate the 

clinical defect regions. 

4 Summary 

Our preliminary study successfully demonstrated the feasibility to drive perfusion 

images from single phase CT image. Using the deep neural network with discrete 

data, the main defect regions can be predicted. This technique holds the promise to 

provide lung functional images for functional lung avoidance radiation therapy. 
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