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Abstract Bayesian data analysis (BDA) is today used by a multitude of research
disciplines. These disciplines use BDA as a way to embrace uncertainty by using
multilevelmodels andmaking use of all available information at hand. In this chapter,
we first introduce the reader to BDA and then provide an example from empirical
software engineering, where we also deal with a common issue in our field, i.e.,
missing data. The example we make use of presents the steps done when conducting
state of the art statistical analysis. First, we need to understand the problem we want
to solve. Second, we conduct causal analysis. Third, we analyze non-identifiability.
Fourth, we conduct missing data analysis. Finally, we do a sensitivity analysis of
priors. All this before we design our statistical model. Once we have a model, we
present several diagnostics one can use to conduct sanity checks. We hope that
through these examples, the reader will see the advantages of using BDA. This way,
we hope Bayesian statistics will become more prevalent in our field, thus partly
avoiding the reproducibility crisis we have seen in other disciplines.

1 Introduction

Statistics, we argue, is one of the principal tools researchers in empirical software
engineering have at their disposal to build an argument that guides them towards
the ultimate objective, i.e., practical significance and (subsequent) impact of their
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findings1. Practical significance is, as we have seen (Torkar et al., 2017), not very
often explicitly discussed in software engineering research today and we argue that
this is mainly out of two reasons.

The first one being that statistical maturity of empirical software engineering
research is not high enough (Torkar et al., 2017), leading to difficulties with connect-
ing statistical findings to practical significance. The second reason is a combination
of issues hampering our research field, e.g., small sample sizes, failure to analyze
disparate types of data in a unified framework or lack of data availability (only 13%
of publications provide a replication package and carefully describe each step to
make reproduction feasible (Rodríguez-Pérez et al., 2018)).

Both of the above issues are worrisome since it couldmake it hard to strengthen ar-
guments concerning practical significance, e.g., connecting effort and, conclusively,
ROI2 to the findings of a research study, if one would want so. For academic research
to be more relevant and have more impact on practitioners, its practical significance
and its implications need to be precise.

Furthermore, issues such as the above is also likely to lead empirical software
engineering towards a replication crisis as we have seen in other disciplines, e.g.,
medicine (Ioannidis, 2005b,a, 2016; Glick, 1992), psychology (Aarts et al., 2015;
John et al., 2012; Shanks et al., 2013), economics (Ioannidis et al., 2017; Camerer
et al., 2016), and marketing (Hunter, 2001).

In order to solve some of the above challenges researchers have proposed that we
need to focus on, e.g., (i) openness, i.e., that data and manuscripts are accessible
for all stakeholders, (ii) preregistration, i.e., a planned study is peer-reviewed in
the usual manner and accepted by a journal before the experiment is run, so that
there is no incentive to look for significance after-the-fact (Dutilh et al., 2017), (iii)
increasing the sample size, (iv) lowering the significance threshold from p < 0.05
to p < 0.005 (Benjamin et al., 2018), and (v) removing null hypothesis significance
testing (NHST) altogether, which the journal Basic and Applied Social Psychology
advocates (Trafimow and Marks, 2015), as do McShane et al. (2017).

However, some researchers, most notably Gelman (2018), claim that even the
above is not enough and argue that a unified approach for these matters should
mainly evolve from three components: Procedural solutions, solutions based on
design and data collection, and improved statistical analysis.

Concerning procedural solutions, Gelman (2018) like others, suggests publishing
papers on, e.g., Arxiv, to encourage post-publication review, and to use preregis-
tration as a tool for lowering the ‘file drawer’ bias. For design and data collection,
Gelman provides convincing arguments that we should focus on reducing measure-
ment error (the example being that reducing the measurement error by a factor of two
is like multiplying the sample size by a factor of four), and move to within-subject

1 In this chapter, we focus on empirical software engineering research where quantitative data is a
major component; for studies that are mainly qualitative a different set of concerns need to be taken
into account, see for example (Lenberg et al., 2017)
2 In literature, Return-On-Investment refers to, in various ways, the calculation one does to see the
benefit (return) an investment (cost) has.
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from between-subject study designs when possible.3 Finally, concerning improved
statistical analysis, Gelman advocates the use of Bayesian inference and multilevel
models (MLMs),4 as a way to discuss “. . . the range of applicability of a study”, i.e.,
practical significance.

Overall, we sidewith these arguments and believe they are critical also for software
engineering to better connect empirical researchwith the practice it ultimately aims to
improve.Wewill thus introduce and exemplify the use ofBayesian statisticalmethods
in empirical software engineering research. They are a good starting point since
individual researchers can learn them and apply them in isolation without waiting for
the community as a whole to take further steps needed to avoid a replication crisis
and to become more practically relevant. We argue that using Bayesian methods
allows us to better connect our findings to practical significance through the use of
more balanced out-of-sample predictions, i.e., one of the outputs from Bayesian data
analysis (this will be further elaborated on in Sect. 2). Additionally, we have yet
to face data from empirical software engineering where Bayesian data analysis can
not be employed, and when having a small sample size, due to the priors employed,
Bayesian data analysis, we would argue, shows its strengths.

In this chapter, we rely on three key concepts: Bayes’ theorem, multilevel models,
and Markov chain Monte Carlo sampling.

Bayes’ theorem states that,

P(A|B) = P(B |A)P(A)
P(B) (1)

where A and B are events, and P(B) , 0. In the theorem, we have two conditional
probabilities, P(A|B) and P(B |A), the likelihood of event A occurring given that
B is true, and vice versa. The marginal probability is then observing A and B
independently of each other, i.e., P(A) and P(B). Often the above is rewritten as,
P(A|B) ∝ P(B |A)×P(A), i.e., the posterior is proportional to the likelihood times the
prior or, in other words, given a likelihood and a prior we will be able to approximate
the posterior probability distribution; this is, of course, also applicable to MLMs.
We will come back to these concepts in the next section.

Multilevel models are not a particularly new thing. However, in the last decades,
they have become accessible to researchers due to the rise in computational power,
and they go nicely in hand with Bayesian analysis. Bayesian MLMs have several
advantages (McElreath, 2015): (i)When using repeated sampling they do not underfit
or overfit the data to the extent single-level models do (i.e., maximally), (ii) the
uncertainty across uneven sample sizes is handled automatically, (iii) they model
variation explicitly (between and within clusters of data), and (iv) they preserve
uncertainty and makes much data transformation unnecessary. In our particular
case, Bayes’ theorem is the foundation for conducting inference when using MLMs,
and Markov chain Monte Carlo (MCMC) is the engine that drives it.

3 In a within-subject design the same group of subjects are used in more than one treatment.
4Multilevelmodels can also be called hierarchical linearmodels, nested datamodels, mixedmodels,
random coefficient, random-effects models, random parameter models, or split-plot designs.
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The reason for usingMCMC for sampling is simply that beforeMCMCwas intro-
duced, it was virtually impossible to sample largeBayesianmultilevelmodels (Baner-
jee et al., 2014). Today, if one wants to sample from a complex, multidimensional,
unknown, posterior probability distribution, MCMC is a widespread technique to
use since we have the computational power available. (For more background on
sampling algorithms please see (McElreath, 2015, Ch. 8).)

Next, we first introduce the main elements of Bayesian Data Analysis (BDA)
with a non-Software Engineering example. Our main contribution is then a detailed
worked case study of applying BDA to an estimation problem in empirical software
engineering. In particular, the example highlights that with this BDA analysis, we
do not need to delete data points for which some data is missing. We conclude the
chapter by discussing the methodological implications.

Bayesian data analysis (BDA) is growing and, as such, is being used in many
disparate scientific disciplines. The approach of BDA that we use in this chapter
relies on designing a generative model which we then can use to do out of sample
predictions. It will be a more involved analysis, but in the end we hope that it will
also provide us with a richer understanding of the phenomena under study.

2 A Short Introduction to Bayesian Data Analysis

Lately, many tools and probabilistic programming languages have been developed
to tackle some of the challenges we face when designing more powerful statistical
models. In our view, several things have improved. First, probabilistic program-
ming languages, e.g., using Julia with Turing.jl, or Stan, tailored for statistical
programming, in combination with resampling techniques, have matured.5 Second,
resampling techniques based on MCMC have improved (Brooks et al., 2011). Third,
procedures for using these techniques now exist (Talts et al., 2018; Betancourt, 2018;
Gabry et al., 2017; Gelman et al., 2017; Betancourt, 2017) and are being improved
iteratively (Vehtari et al., 2019). Together, these development make more powerful
analysis methods available to a wider audience.

In this section, we will provide a short introduction to model design, its tool
support, and some terminology that we will use in this chapter. To keep it simple
and general, we will take data and an example from everyday life, rather than an
empirical software engineering example. We do not expect the reader to be an expert
after this, but rather be able to follow what we present in this chapter, be better
prepared for the empirical software engineering case study that then follows, and
then perhaps read further into the literature we present in Sect. 4. Let us start with
terminology.

5 See https://julialang.org, http://turing.ml, and https://mc-stan.org.

https://julialang.org
http://turing.ml
https://mc-stan.org
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In this chapter, we will design statistical models. We will use mathematical
notation for precision as well as brevity. To generalize, a model will consist of a
likelihood, a linear equation, and priors. The purpose of the model is ultimately to
make predictions/inferences concerning the outcome by using a posterior predictive
distribution. Let us introduce a simple example inspired by McElreath (2015).

We want to predict the height of human beings given their weight. A model could
then look like this,

heighti ∼ N(µi, σ)
µi = α + βw × weighti
α ∼ N(181, 20)
βw ∼ N(0, 10)
σ ∼ Half-Cauchy(0, 10)

Let us now go through this line by line. First, we claim that height has a Normal
distributionwithmean µ and standard deviationσ, i.e., our likelihood. The subset i in
height, weight, and µ is an indication that this holds for each heightwe have in the data
set, i.e., for every human being in the dataset. But why a Normal distribution? Well,
there are ontological and epistemological reasons for this (McElreath, 2015), but in
short: if we add together random values from the same distribution it converges to a
normal distribution. Since there are many different factors that, jointly, determines
the height of a person, e.g., their genetics, nutrients of the mother during pregnancy,
food intake as a small child, etc., and their effects ‘add up’, it is often a sensible
assumption to assume the result will be normally distributed.

The next line encodes our main assumption about the heights, i.e., they have a
linear connection to the weight (our linear equation). We have an intercept labeled
α, expressing the average height of a human that has average weight, together with a
slope βw , which captures how much longer (shorter) a human can be expected to be
for each added (subtracted) unit of weight they have. We want to estimate these two
parameters using the data: height and weight. In this example, height is the outcome
and weight is the predictor. We can have more than one outcome, this is known as
a multivariate model (compared to univariate models as in the example above), and
we can have more than one predictor, as we will see later in this chapter.

Next, in a Bayesian model, we need to express our prior belief, our so-called
‘priors’. The α parameter is the intercept, and hence captures the mean height we
expect (see Fig. 1 for a graphical presentation). What we are saying is that we have
prior knowledge, i.e., we believe that the mean height will be 181 cm. Why 181?
Well, this is the average height of the three authors of this chapter, and when writing
the chapter, we had direct and reliable access to this data. Also, our prior expresses
that we can expect the mean to vary with a standard deviation of 20, i.e., finding
humans with a height in the range 161 to 201 cm would not be too uncommon even
if values outside that range can also sometimes happen. For βw , our prior indicates
that the slope has a mean of 0 and a standard deviation of 10 (Fig. 1). We could also
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set a more specific prior here, e.g., we have a feeling that an increase in weight also
leads to an increase in height, but let’s use a very wide and ‘allowing’ prior.

Finally, we have a prior on σ, which is the expected variation in actual, measured
data from what our linear, ‘core’ model predicts. We have chosen a Half-Cauchy
distribution here since we know that the variation cannot be negative (Fig. 1). The
Half-Cauchy is a common prior for σ and is roughly a Normal distribution cut in
half, i.e., we do not allow negative values on σ.6 It also has a higher probability for
larger values than aNormal distribution, since we have less information on howmuch
variation to expect. In the end, if we have enough evidence (data), it will dominate,
also known as ‘swamp’, the priors. This means that the priors are not as critical in
situations when we collect lots of data. Before we go on and use our statistical model
on actual, measured data, we should study how our model behaves based on only the
priors. We can do this by sampling from our priors and ‘executing’ the model to see
which heights it predicts.

In the lower half of Fig. 1, we see the joint prior probability distribution, which
is a combination of the figures on the first row. The mixtures of the priors for α, β,
and σ, and the linear regression they imply could be seen as representative for our
height given a weight.

So what does our prior probability distribution (Fig. 1) tell us? Well, 2.93% of
the population is assumed to be more than 272 cm tall.7 Additionally, 13.8% are less
than 147 cm.8 This seems a bit strange in our view, and even more bizarre is that
0.015% of the population is shorter than 20 cm, when the shortest human recorded
was approximately 53 cm.

But there is no need to worry. The main idea when selecting priors is to delimit
the volume that the sampling needs to cover. We want to get rid of obviously absurd
values while ensuring that we do not rule out values that could happen. Who knows,
maybe someone who is <53 cm or >272 cm will be found this year. We have just
conducted a prior predictive analysis, which is, we claim, a compulsory part of doing
Bayesian data analysis.

For actually making inferences, i.e., determining the likely ranges of the param-
eters given our model, we will need data. We will make use of a data set found in
the rethinking R package and a R Markdown script of our analysis can be down-
loaded.9 After sampling, we will have a posterior distribution, which is proportional
to the likelihood and the prior distribution. In Fig. 2, we have plotted the empirical
data set (circles) and the linear prediction (straight line). The narrow shaded interval
is the 95% distribution of µ (i.e., the exact values for many µ from the posterior),
and the wider and lighter interval is the 95% plausible region (i.e., 95% of our µ
should be found within that region).

6 Other priors for σ can of course also be used. Please see https://github.com/stan-dev/
stan/wiki/Prior-Choice-Recommendations.
7 The tallest man, for whom there is irrefutable evidence, was 272 cm.
8 People of short stature are <147 cm
9 https://github.com/torkar/BDA_in_ESE

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/torkar/BDA_in_ESE
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Fig. 1 Our selected prior
probabilities (priors) for
parameters α, β, and σ,
respectively (top row). These
are then combined into our
prior predictive distribution
for the height µ (bottom row)
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Fig. 2 Height as a function
of weight. The line represents
the µ, the dark shade the
95% distribution of µ, and
the lighter shade the 95%
plausible region

140

150

160

170

180

30 40 50 60
weight

he
ig

ht

Having a posterior predictive distribution we can now start to conduct various
inferences, but we will stop here for now and instead, in Sect. 3, present multiple
ways we can make use of a posterior.

To summarize, the three main steps of Bayesian model design and analysis are:

1. Understand the data and the problem.
2. Design a probability model (conduct model checking and iterate if the model

needs to be revised) and sample from the posterior to conduct diagnosis.
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3. Conduct inference. That is, learn something about the population by using the
posterior probability distribution, e.g., by conducting statistical tests or deriving
estimates.

The above is an iterative process, and in the last step, we also can change the
parameters to see how they affect the outcome variable, i.e., to analyze the practical
implications of different scenarios and thus assessing the practical significance of
the results. The above steps will next be covered in a detailed case study within
empirical software engineering.

3 Case Study

Most would argue that to conduct estimations in software projects, one should not
rely exclusively on expert opinion, but also on quantitative data collected in a more
unbiased way. To this end, researchers have published studies making use of, among
others, the International Software Benchmarking Standards Group’s data repository
(ISBSG).10 (For an overview and introduction to the data sets please see (Hill et al.,
2001).) Their large collection of data sets include cost, size, and defect data from
projects and sprints, which can be used for research, estimation, and prediction for
and in future projects.

While the ISBSG data sets are typically cleaned and anonymized version of data
sets collected from industrial projects they, like similar data sets in other collections,
still exhibit many of the same characteristics that we can expect from actual projects
in industry. For example, they have missing data, disparate quality in data collection
procedures, and a large variety of data types. These are data quality issues we see
also in empirical software engineering research in general.

As we will later see in Sect. 4, the dominant strategy to handle missing data in
empirical software engineering research is to merely remove cases that have missing
data (listwise deletion). We believe that this strategy is sub-optimal and, generally
speaking, not good for our research discipline. Even in cases when data can be
classified according to the quality of the data collection procedure, as is the case
with the ISBSG data sets, one sees that our community often chooses only to use
a subset of data, classified to be of the highest quality (see, e.g., (Keung, 2008;
Liebchen and Shepperd, 2008) for recommendations, and (Mittas et al., 2015) for
an example where the authors use the recommendations). In short, we believe that
data of low quality should be seen as better than no data at all, and the general rule
of thumb should be never to throw away data. This is the context for our showcase
and, in the following, we will both apply techniques for data imputation and conduct
Bayesian data analysis on effort estimation data on the ISBSG data set collection.

10 http://isbsg.org

http://isbsg.org
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11 As we will see, missing data can be naturally handled in Bayesian analysis and,
thus, showcases one of the unique and pertinent strengths in an empirical software
engineering context.

3.1 The Data and the Problem

We will use the ISBSG Release 10 data set and set the dependent variable to
Effort, i.e., the total number of person-hours to conduct a certain development
task. According to, e.g., (Keung, 2008; Liebchen and Shepperd, 2008) and the
International Software Benchmarking Standards Group (ISBSG), the following pre-
processing steps are appropriate:

1. Only projects classified with data quality rating ‘A’ are kept, and ‘B–D’ are
excluded.

2. Only projects using IFPUG (unadjusted functional size measurement) should be
kept. However, the data description clearly states that versions ≥ 4.0 should not
be compared to < 4.0. Hence, we only use versions ≥ 4.0.

3. According to Keung (2008), some additional variables should be kept for com-
patibility with previous studies.

4. Cases with missing values should be excluded.

The above leads to variables of interests as listed in Table 1, according to Mittas
et al. (2015). If we use the variables in Table 1, and follow the advice above, we will
later see that we need to remove 3,895 projects out of the total 4,106 (close to 95%
of the projects). This seems wasteful but is the practice in our discipline, given the
current standards and relevant recommendations.

Imagine instead that we aim to keep as much data as possible, i.e., a data-greedy
approach. Well, first of all, we should consider including all projects no matter the
quality rating. After all, we can easily classify them differently in a statistical model
and even investigate the difference between projects depending on the data quality
rating. Hence, we decide to include all projects and mark them according to their
data quality rating, i.e., DQR, no matter if they have missingness in them.

The next, crucial step before stating our model, is to analyze causality among our
variables (in Table 1). While this was not needed in the simple, height-of-humans
example above, it is essential in more complex situations when multiple variables
measure entities that might be causally related. Since this is almost always the
case in real-world empirical software engineering research, it should be an essential
step in building our statistical model. Otherwise, we risk that dependencies, e.g.,
correlations and collinearity, among variables might influence, and could potentially

11 A reproducibility package, making use of brms (Bürkner, 2017) (with Stan (Carpenter et al.,
2017)) written in R (R Core Team, 2018), can be downloaded: https://github.com/torkar/
BDA_in_ESE. The raw data can, however, not be downloaded due to copyright reasons. Please see
README.txt in the repository for more information and what you need to do to access the raw
ISBSG data.

https://github.com/torkar/BDA_in_ESE
https://github.com/torkar/BDA_in_ESE
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Table 1 Variables of interest according to previous studies. The variable names that are underlined
have been removed in this study as explained in Sects. 3.1.1 and 3.1.2. The variable name in bold
was added as explained in Sect. 3.1
Name Description
AFP Adjusted function points
Input Number of inputs
Output Number of outputs
Enquiry Number of enquiries
File Number of files
Interface Number of interfaces
Added Number of added features
Changed Number of changed features
Deleted Number of deleted features
Effort Actual effort (person-hours)
DQR Data quality rating

weaken our analysis. Below, we will then also directly analyze correlations between
predictors, through an analysis of non-identifiability before we can then decide on
our model we will also discuss how to handle the missing data and the sensitivity of
our priors.

3.1.1 Causal Analysis

All predictors except DQR, seem to be raw and unadjusted measurements that are
later used to calculate the adjusted function point (AFP).

Drawing our causal model (Fig. 3) as a directed acyclic graph (DAG) shows
something generally considered to be a pipe confounder (one of four types of relations
in causal DAGs) (Pearl, 2009).

In short, AFP mediates association between the other predictors and our outcome
Effort, i.e., Effort ⊥⊥ Input|AFP, or to put it differently, Effort is independent of
Input, when conditioning on AFP.

Fig. 3 A directed acyclic
graph of our scientific model

AFP

Added

Changed

Effort

Enquiry

File

Input

Interface

Output

We often worry about not having a predictor that we need for making good predic-
tions (omitted variable bias). However, we do not often consider mistaken inferences
becausewe rely on variables that are derived from other variables, i.e., post-treatment
bias (McElreath, 2015). (Rosenbaum (1984) calls this the concomitant variable bias.)
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In experimental studies, one would declare AFP to be a post-treatment variable, but
the same nomenclature can be used in observational studies. To summarize, the
above indicates that AFP should not be a predictor since it is derived from other,
more basic, variables, so we will leave it out for now.

Note that causal analysis is not absolute in the sense that there is only one possible
causal model that could be posited. Much scientific debate might be needed to argue
for one or the other specific model and, thus, could lead to the exclusion of different
sets of variables by different authors. As a consequence, this might lead different
researchers to include or exclude different sets of variables and, thus, obtain different
statistical results from separate analyses of the same data. However, in theory, this
uncertainty and apparent subjectivity are still present with a traditional approach to
statistical analysis, albeit hidden under the simplicity and familiarity of just applying
a known statistical test.

3.1.2 Identifying Non-Identifiability

Strong correlations between variables are generally speaking a challengewhen build-
ing statistical models. The model will make good predictions, but it will be harder to
analyze and understand since the impression will be that variables that have a strong
correlation, do not seem to have predictive power, while in fact, they have strong
associations with the outcome (McElreath, 2015, Sect. 5). As a concrete example,
if you want to build a model of a person’s length, using the length of both her legs
as separate predictors will not help the matter, i.e., adding another leg will not add
predictive power to the model since it will correlate very strongly with the length of
the first included leg. This type of multi-collinearity we generally want to avoid in
statistical models.

Traditionally, there are two ways one can investigate this: Examining a pairs
plot where all combinations of parameters and their correlations are visualized,
or check if the matrix of predictor values is a full rank matrix, and thus identify
non-identifiability that way.12

The latter, matrix-based approach consists of declaring a model y = β1x1 + . . . +
βnxn, using the data, i.e., the values of the predictor variables, xi, . . . , xn as a matrix
A, and decompose it into a productA = QR of an orthogonal matrixQ, and an upper
triangular matrix R. By analyzing the diagonal of the matrix R a threshold value of
|di j | < 0.1 along the diagonal is then often used to declare a variable as unsuited for
inclusion in a model. Often something like 1e−12—quasi-zero for a computer—could
be used, but generally speaking anything below 1.0 has traditionally been excluded.
The argument is that if it is below 1.0, then the variable would provide very little
additional value to the model and should thus not be included.

Identifying non-identifiability for our data set from Table 1 clearly indicates that
Deleted should be a candidate for removal (|dDeleted | = 9e−12). It might feel strange

12 In short, different values of the parameters must generate different probability distributions of
the observable variables. Otherwise we face various degrees of non-identifiability, i.e., essentially
that (too) many parameter combinations could lead to the same observations.
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to remove predictors when our ultimate goal is to use as much data as possible.
However, to build a statistical model that is sane, has good out of sample prediction,
and is understandable, a trade-off is needed. Here we argue that the bulk of work
should be done before we design our statistical model, to make use of the missing
data techniques available to us.

3.1.3 Missing Data Analysis

When data is missing from cases of our data sets the most common solutions is to
either delete such cases or impute, i.e., ‘guess’, based on the values we do have.
Rubin (1987) has shown that very often 3–5 imputations are enough (the complete
dataset is imputed fully 3–5 times) and that the relative efficiency of an estimate
based on m imputations is approximately:

Relative Efficiency ≈ (1 + γ

m
)−1

where γ is the fraction of missing information. The relative efficiency in this case
refers to using the finite m imputation estimator instead of the infinite number for
the fully efficient imputation.

As an example, consider that we have 20% missing information in a variable
(γ = 0.2), given m = 5, we have reached a relative efficiency of approximately 96%.
Setting m = 10 we reach 98%. By doubling the computational effort, we have only
a slight gain in relative efficiency. On the other hand, we have lots of computing
power at our hands nowadays. However, more recently, we have seen that other
recommendations for handling missing data have been presented.

Bodner (2008) and White et al. (2011) showed through simulations and by an-
alytically deriving Monte Carlo errors, respectively, that the general rule of thumb
should be m = γ × 100, i.e., if a variable has 40% missing data (γ = 0.4) we should
set m = 40 (using Rubin’s efficiency estimate this would mean 92.6%→99.0%).

Aswill be evident, wewill take themore conservative approach (i.e.,m = γ×100),
when we present the model implementation in Sect. 3.2.1.

Before we continue with the next section, it might be worthwhile to note that
missingness in a Bayesian framework can be done in different ways. Either we
conduct multiple imputations to derive uncertainty for all parameters, including our
missing data. This is the path we have chosen here. The other approach would be to
design a model of all data, including the missingness mechanism.

To model the missingness mechanism can be more involved and requires us to
be very explicit about how our missingness occurred. At the best of times, this is
a challenging task. We could instead argue that using the first approach, as we do
here, shows the strengths of the Bayesian approach, since it easily can make use of
various techniques, to handle missing data, in a coherent and principled way.
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3.1.4 Sensitivity Analysis of Priors

Our analysis so far, to summarize, indicates that we should use seven predictors and
one group variable (quality level of the project, in ISBSG terms), to predict one
outcome variable (Effort). We can already now assume that we will most likely use a
likelihood (i.e., our assumptions regarding the data generative process) that is based
on counts (Effort is after all a count, the number of hours, going from zero to
infinity).

Thus, we plan to use a generalized linearmodel, with a link function that translates
between the linear predictor value and the mean of the distribution function. In the
case of count distributions, such as Poisson, it is customary to use a log link function,
i.e., a parameter’s value is the exponentiation of the linear model. However, when
setting priors for parameters and using a link function, unexpected things can happen,
and the priors might not have the effect one would expect. To this end, we should
always do prior predictive simulations, i.e., a sensitivity analysis of how different
settings of the priors affect the predicted variable.

The description of the data set indicates that approximately 20% of the projects
have more than 20 people in the team. If we assume, roughly 1,700 h/year for an
individual, having 60 people in a team sums up to approximately 100,000 person-
hours per year. Let us now assume that this is the maximum value for our outcome
variable Effort. Random sampling from eN(5,4) provides us with x̄ ≈ 208, 000 (we
use the exponential since we assume a log link function) indicating that this could
be an acceptable prior for the intercept α.

We arrived at the values 5 and 4 above by starting from typical default values such
as assuming α to be N(0, 10) (not uncommon as a default choice in, e.g., Poisson
regressions), this would lead to x̄ = 8 × 1011 hours of work effort for an average
project. This would correspond to close to half a billion people working on the
project for one year. Thus we should use non-default priors to adapt the priors better
so that they do not (often) give absurd values.

To assess the impact of very broad priors likeN(0, 10) for our seven parameters,
we thus, iteratively, compared their usage to that of other, narrower priors like
N(0, 0.25). Furthermore, assuming a log link function, the additive effects of the
seven priors for our β parameters would, on a normalized scale, correspond to
N(0, (10× 7)2) andN(0, (0.25× 7)2), respectively. As is evident from Fig. 4 (a), we
have a massive emphasis on extremely high y-values (we would require the world’s
total population to work in a project for this to happen). Now compare (a) with (b).
We still allow extremely large y-values (up to 640 × 106!), but the emphasis is now
a bit more realistic.

To summarize, prior predictive simulations indicate that setting N(5, 4) and
N(0, 0.25) on α and β, respectively, allows us to delimit the multidimensional Gaus-
sian space of possible parameter values, while still not remove the probability of
extreme values altogether. If we would still be uncertain, one could have conducted
even more prior predictive simulations (Simpson et al., 2014). The prior knowledge
we took with us when doing this analysis, was that it was not likely that very many
projects had billions of people involved. One could have taken a more conservative
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(a) β priors N(0, 10) (b) β priors N(0, 0.25)

Fig. 4 Prior predictive simulation of broad and informative priors, respectively. The x-axes are
z-scores, while the y-axes represents our outcome variable Effort. The dashed horizontal line
corresponds to our assumed maximum value for our outcome variable, and is the only value of
interest in this case. We have plotted 100 simulations with the intercept N(5, 4) and our seven priors
for the respective β parameters

approach and claim that it is not likely that we havemillions of people in our projects;
however, as we will see, HamiltonianMonte Carlo will handle these priors well given
the available data.

One should always conduct prior sensitivity analysis (prior predictive simulation)
before making use of the available data. There is always some prior knowledge one
can use!

3.2 Design of Model and Diagnosis

Based on our initial analysis, we have a much clearer picture of which variables to
include and the overall sensitivity of our priors. For our model one could imagine
using a Poisson likelihood, that is, we have a count (Effort0→∞), which we can
model binomial events for when the trials N are very large and the probability p
small. However, that would be a mistake.

In any analysis, it is important first to get to know the actual data. Thus, let us
look at some descriptive statistics of the data (taking into account the pre-processing
steps previously introduced).13 Some issues catch the eye in Table 2. First, Effort
has a max value of 645,694 (three times larger than the mean for our priors). Second,
the medians are consistently lower than the means (in one case the median is zero)
indicating positive skewness. Third, not visible in the table, Effort, compared to

13 For all data sets we use single quotes to emphasize the names, e.g., ‘A_clean’, while we print out
variable names in verbatim.
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the predictors, contain no zeros (indicating that we do not need to consider zero-
inflated or hurdle models (Hu et al., 2011)). Finally, the mean and the variance for
our outcome variable are very different (the variance is approximately 70,000 times
larger than the mean).

Table 2 Descriptive statistics of our predictors and the outcome variable Effort using all data
available to us (i.e., 4,106 projects). after conducting the pre-processing steps in Sect. 3.1. From left
to right: Name, mean, median, max, min, and sample variance (with removed NAs). All numbers
rounded to the nearest integer
Variable x̄ x̃ max(x) min(x) s2

Input 143 56 9404 0 144 167
Output 125 47 3653 0 70 522
Enquiry 74 27 2886 0 22 318
File 118 43 10 821 0 137 172
Interface 39 10 1572 0 11 082
Added 357 142 15 121 0 591 300
Changed 128 0 18 357 0 344 677
Effort 5384 1828 645 694 4 391 631 309

Concerning the latter issue, a Poisson likelihood assumes the mean and the
variance be approximately equal. This allows us to use the negative binomial, known
as the Gamma–Poisson (mixture) distribution, as our likelihood, i.e., a continuous
mixture model where we assume each Poisson count observation has its own rate.
However, since we are still using a Poisson model, in essence, one could claim that
we do not redo the sensitivity analysis.

To summarize our findings so far we can now formulate our model:

Efforti ∼ Gamma-Poisson(λi, φi )
log(λi ) ∼ α + βInput × Input + βOutput × Output + βEnquiry × Enquiry

+ βFile × File + βInterface × Interface + βAdded × Added
+ βChanged × Changed + αDQR[i]

α ∼ N(5, 4)
β1, . . .,7 ∼ N(0, 0.25)
αDQR ∼ N(0, σ)

σ ∼ HalfCauchy(0, 1)
log(φi ) ∼ Gamma(0.5, 0.5)

We model each observation from a negative-binomial (Gamma-Poisson) distri-
bution, with a failure rate λ and shape φ. We then use a log link for our linear model
λ where we include an intercept α and parameters (β) for all predictors.

We also add varying intercepts in the form of our DQR variable. The idea is that
each data quality rating should be treated uniquely by allowing us to estimate α for
each rating, i.e., each DQR will have its own intercept. This will enable us to see
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if there is an overall difference between projects judged to have different quality
ratings.

Finally, we set the aforementioned priors on our β parameters (but we useN(0, σ)
for our unique intercepts, to separately estimate σ for each level of DQR). We also
set HalfCauchy(0, 1) and Gamma(0.5, 0.5) for σ and φ, respectively. Both of these
priors are regularizing priors common for these types of parameters.14

3.2.1 Using the Model

In the previous sections, we presented our statistical model with assumptions. In
this section, we will make use of it in two ways: sampling with complete data and
imputed data. However, before we begin, Table 3 describes the data sets we will use.

Table 3 Data sets used. The ‘A*’ and ‘AD*’ categories are of different dimensions due to our index
variable, DQR, added to the ‘AD*’ sets. From left to right. Name of data set, number of projects
(rows), number of NAs, percentage of NAs, and number of zeros
Name # projects # NAs % NAs # zeros
‘A’ 501 2109 23.8 316
‘A_clean’ 214 0 0 316
‘AD’ 1689 8507 19.8 736
‘AD_clean’ 494 0 0 727

The data sets are divided into two categories. First, we have data sets that only take
into account projects classified as having the highest quality rating (‘A’) and data sets
where we use all four quality ratings (‘AD’); taking into account the pre-processing
steps in Sect. 3.1.

First, we have subsets with NAs (‘A’ and ‘AD’) and, second, subsets where all
original NAs are removed (‘*_clean’). The logic to use these data sets is that we
want to use as much data as possible (but we pay the price of missing data), and
removing all NAs is, as we have discussed, not uncommon.

One could also imagine having subsets where all zeros are assumed to be NAs,
but that would be a bit too conservative assumption in our opinion, and we leave it
to the reader to try out such a scenario.

If one would like to compare our data sets with what is commonly seen in
literature then, taking into account that we have a more restrictive view on which
IFPUG versions are included, ‘A_clean’ would be the most similar data set (e.g.,
Mittas et al. (2015) report using 501 projects, while we end up with 214, using our
more restrictive subset). However, we are more interested in the cases where we
have larger data sets, together with missing data, and comparing these with, e.g.,
‘A_clean’.

14 Please see here for prior choice recommendations: https://goo.gl/fx2F7V.

https://goo.gl/fx2F7V
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Missing Data Imputation

Summarizing missing data (Table 4) shows that the missingness is multivariate
(there is missing data in more than one variable), connected (the second row with
data indicates that we have 214 rows that are complete, i.e., no data is missing for
these rows), and non-monotone (we have zeros spread out within all the ones, i.e.,
there is no monotonicity). Generally speaking, this indicates that data imputation is
possible (in particular, connectivity is an essential part of missing data imputation).

Table 4 Missingness of missing data. Top row lists each variable. Bottom row the number of
missing entries per variable. First column, the frequency of each pattern. Last column, number of
missing entries per pattern

Effort Added Input Output Enquiry File Interface Changed
Freq. # missing entries
214 1 1 1 1 1 1 1 1 0
14 1 1 1 1 1 1 1 0 1
8 1 1 1 1 1 1 0 1 1
2 1 1 1 1 1 1 0 0 2
1 1 1 1 1 1 0 0 1 2
2 1 1 1 1 0 1 1 0 2
1 1 1 1 1 0 0 1 0 3
3 1 1 1 0 1 1 1 0 2
1 1 1 1 0 1 1 0 0 3
1 1 1 1 0 1 0 0 1 3
2 1 1 0 1 0 0 1 0 4
5 1 1 0 0 0 0 0 1 5
4 1 1 0 0 0 0 0 0 6
1 1 0 1 1 1 1 1 1 1
1 1 0 1 1 1 0 0 1 3
84 1 0 0 0 0 0 0 0 7
157 0 0 0 0 0 0 0 0 8
Missingness
per variable

157 243 252 255 255 256 264 270
∑

1952

van Buuren (2007) recommends that one calculates each variable’s influx and
outflux and plots them. Influx (I) is defined as the number of variable pairs with Yj

missing and Yk observed, divided by the total number of observed data cells while,
in the case of outflux (O), we instead divide by the total number of incomplete
data cells. In short, a completely observed variable gives Ij = 0, while the opposite
holds for O j . If one has two variables with the same degree of missing data, then
the variable with the highest O j is potentially more useful for imputation purposes.
Examining Fig. 5, Effort and Change have the highest O j and Ij . To summarize,
Effort will be the most influential variable for imputation, while Change will be
the easiest variable to impute. This is worth keeping in mind later when we analyze
the results.

To conclude, we will create multiple imputations (replacement values) for multi-
variate missing data, based on Fully Conditional Specification (van Buuren, 2007).
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Fig. 5 Outflux versus influx of data set ‘A’ as described in Sect. 3. (A small degree of random
noise, ‘jitter’, was added to the plot to make it more readable.)

Each incomplete variable is imputed by a separate model using predictive mean
matching (numeric data), or proportional odds model/ordered logit model (factor
data with >2 ordered levels) (Rubin, 1986; van Buuren, 2007). Concerning predic-
tive mean matching, the assumption is that the missingness follows approximately
the same distribution as the data, but the variability between the imputations over
repeated draws reflects the uncertainty of the actual value.

We will approach this conservatively and follow the latest guidelines, as already
discussed in Sect. 3.1.3, and hence set the number of imputations m = 25 (see
Table 3) since we have approximately 25% missingness in certain variables.

3.2.2 Diagnostics

In this section, we will first present some diagnostics from the Hamiltonian Monte
Carlo sampling we conducted.
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First, the ratio of the average variance of drawswithin each chain to the variance of
the pooled draws across chains is an estimate we can use to see how well our chains
have diverged towards a common posterior. This is measured by R̂ and generally
speaking R̂ should go towards 1.00, and anything above 1.01 should be a clear
warning sign of bias. In our case, for all sampling conducted, R̂ was consistently low
(see Fig. 6a for one example where we used the ‘AD_clean’ data set).

shape
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Fig. 6 R̂ values for each parameter (a) and effective sample sizes (b). For R̂ (a), generally speaking,
any values above 1.01 are not appropriate and indicates that one or more chains are biased.
Concerning effective sample sizes (b), anything below 0.2 is generally speaking a warning sign of
a misspecified model. Here we used the ‘AD_clean’ data set

Second, the effective sampling was consistently high, i.e., neff � 0.2. As an
example, if we have 2,000 samples from each chain, the default is then to throw
away the first 1,000 as warmup samples. But then we use four chains, ending up with
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Fig. 7 Trace plots of four pa-
rameters using the ‘AD_clean’
data set
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Fig. 8 Rank plots of the
four chains from the βIntercept
sampling. The chains should
be close to uniform. Here we
see a slight dip at the start of
Chain 1 and the end of Chain
3. These dips can be much
more exaggerated (e.g., no
samples collected at all) and
then there would be reasons to
worry
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1, 000 × 4 samples. This means that we should not, in our example, have less than
400 samples for a parameter (see Fig. 6b).

Third, the visual inspection revealed that the chains seemed to mix well (hairy
caterpillar ocular test). It should look messy, tight, and mixed (Fig. 7). If we are a
bit hesitant concerning the mixture, and in particular the sampling conducted at the
tails, once could also use rank plots (Vehtari et al., 2019). If we investigate Fig. 7 we
see a clear difference between βIntercept and the other parameters. Using rank plots
for the chains for βIntercept, Fig. 8, provides a better view. We can see that there is a
dip at the start of Chain 1 and the end of Chain 3, but it still indicates that the chain
managed to sample quite well at the tails.

Finally, the Bayesian fraction of missing information, another diagnostic, shows
a significant overlap between the energy transition density, πE , and the marginal
energy distribution, π∆E (Fig. 9). When the two distributions are well-matched, the
random walk will explore the marginal energy distribution efficiently (Betancourt,
2017).

We sampled four chains, each with 2,000 iterations, and the first half of the
iterations were discarded as warmup iterations. For our imputed data sets this means
that we have 1, 000 × 4 × 25 = 100, 000 posterior samples. Figure 10 provides a
comparison of our empirical outcome y (using the data set ‘A_clean’), with draws
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Fig. 9 Comparisons of the
energy transition density,
πE , and the marginal energy
distribution, π∆E (light and
dark gray, respectively). A
significant overlap is visible
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Fig. 10 Comparison of the
empirical distribution of the
data (‘AD_clean’), to the
distributions of simulated data
from the posterior predictive
distribution (50 samples).
Note that the x-axis has been
transformed
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from our posterior distribution; we see evidence of a fairly good match; a perfect
match is not what we want since then we could just use our data as-is, i.e., the
variability of each yrep vis-à-vis y is what interests us.

Another check one should do is to investigate howwell the sampling (yrep)matches
our empirical data y for each project (row) in our data set. In Fig. 11, we have drawn
500 samples from the posterior. As we can see our empirical data, y, does not always
match yrep, but that is all fine actually, what we want is a model that on average
makes better predictions. After all, if we would want perfect predictions for our data
set, why not use the data set as-is?

3.3 Conduct Inference

If we turn our attention to the estimated intercepts for our group-level variable DQR
(i.e., a project’s rating according to the quality of data collected), we see something
interesting in Fig. 12. There is a clear pattern, in both data sets, where quality rating
‘A’ and ‘D’ are to the left, while ‘B’ and ‘C’ are to the right. It is an indication that
these two groups are perceived as similar to each other, which is a bit ironic since ‘A’
and ‘D’ are conceptually the opposite of each other in terms of data quality rating.
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Fig. 11 Posterior predictive checks of the first 10 projects in our data set. Vertical bars with points
indicate the simulated medians and darker points indicate our empirical values. Thicker and thinner
lines indicate 50% and 90% central intervals, respectively. We drew 500 samples from the posterior

This indicates that one should question the data quality ratings in the data set and,
given enough data, DQR seems to become less critical.

Fig. 12 Interval plots of
α estimates with 50% and
95% uncertainty intervals.
Upper plot is the imputed data
set, below plot the cleaned
data set. The uncertainty is
slightly different between each
category even though this is
not very obvious in this plot
(the cleaned data set, below,
has higher uncertainty)
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Examining the estimated parameters (Fig. 13) we see that parameters perceived
as ‘significant’ differ between the data sets.15 There are three comparisons we should
make here. First, comparing imputed with cleaned data sets (within each column).
Second, comparing ‘A’ and ‘AD’ models (between columns). Third, compare the
upper right and lower left plots (data-greed approach vs. state of practice).

First, if we look at the left column, we see that nothing significant has changed.
On the other hand, examining the right column, we see that βAdded is no longer
significant in the imputed data set. This might make you sad. However, using all
data can lead to weaker inferences and, honestly, should we not make use of all data
available no matter our wishful thinking concerning inferences?

15 Our notion of ‘significant’ is here that the 95% highest density posterior interval does not cross
zero. However, other notions do exist (Kruschke, 2018).
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Fig. 13 Density plots drawn
with overlapping ridgelines
of β estimates and 95%
uncertainty intervals. Left
column presents data sets ‘A’,
while right column presents
data sets ‘AD’. Dark gray
plots indicate imputed data
sets (first row), while light
gray represents cleaned sets.
In particular the top right and
lower left plots are of interest
to us since they represent the
data-greed approach and the
state of practice, respectively
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Second, if we compare our simple models with our multi-level models (between
column comparisons), examining the two lower plots we see that βAdded has become
‘significant’ in the model where we make use of all quality ratings (right plot). In
this particular case, one would lean towards the multi-level model (right plot) since
it, after all, makes use of more data and employs partial pooling to avoid over-fitting.

Finally, we should compare the upper right and lower left plots (our data-greed
approach with state of practice); they are the reason for conducting this study. Two
things are worth noticing here: (i) βEnquiry is shifted noticeably more to the right
in the imputed data set and is significant, as is βInterface. (ii) βChanged is clearly not
significant in the imputed data set, while in the cleaned data set, it is nearly so. Once
again, making use of more data can lead to weaker inferences, which is a good thing.

Let us now examine what the posterior predictive distribution provides us with
concerning point estimates regarding our outcome Effort. The posterior distribu-
tion allows us to set predictors at different values and generate predicted outcomes
with uncertainty. In our case, we would like to examine the difference between pos-
terior predictive distributions of ‘A_clean’ and ‘AD’, since ‘A_clean’ is based on the
assumptions commonly used in literature and ‘AD’ makes use of as much data as
possible, i.e., our data-greed approach.

Plotting our two posterior distributions indicates the differences (see Fig. 14).
As is clear, the median is higher when taking into account more data (‘AD’), but
the uncertainty is also slightly larger. Ultimately, comparing these types of point
estimates should always go hand in hand with the purpose of the analysis, i.e., the
utility function.

The posterior distribution allows us to make probabilistic statements that pro-
vide us with a deeper understanding of the phenomena we study. We could make
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Fig. 14 Comparison of the posterior distributions of the ‘A_clean’ and ‘AD’ data sets (n = 4000).
Notice the transformation of the x-axis. The median values on natural scale, with 95% highest
posterior density intervals for ‘A_clean’ and ‘AD’, are µ̃A_clean = 2937, 95% HPDI[2069, 15441]
and µ̃AD = 3280, 95% HPDI[1920, 17783], respectively (medians indicated by vertical lines).
Highest posterior density interval (HPDI) is the tightest interval containing the specified probability
mass, i.e., 95% in our case

statements for each model separately, i.e., investigating ‘AD’ we can say that the
probability that the effect is greater than 10% (a decline of >10%) for the D category
is 2.6%, while for the A category it is 7.2%. Alternatively, in the case of ‘A_clean’,
that the probability that the effect of Enquiry is greater than 5% (an increase of
>5% in this case) is 58.6%. Of course, one could also look at the probability that
the estimates of parameter βInput is larger than 0 using the ‘AD_clean’ and ‘AD’ data
sets, i.e., 79.8% and 60.2%, respectively.

These types of probability statements are a positive aspect of Bayesian analysis
and the posterior probability distributions that accompanies it.

3.4 Threats to Validity

In this section, we will cover threats to validity from a quantitative and statistical
perspective. The below threats are not the type of threats that are normally discussed
in empirical software engineering (Wohlin et al., 2012) (such as threats to internal
and external validity). The latter refers to a rigid experimental design (often based
on statistical hypothesis testing) and are mainly qualitative; in contrast, the threats
we discuss are grounded in the quantitative analysis we performed, and as such
they address the very design of the analysis (which allows for much more flexibility
using the tools of Bayesian data analysis). In Sect. 3.4.1 we will compare our study’s
design to recent guidelines concerning the design and reporting of software analytics
studies.
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Directed Acyclic Graphs (DAGs).Making ones scientific model explicit is dan-
gerous since it becomes open to attack. We believe, however, that it should be
compulsory in any scientific publication. We employed DAGs to this end, a concept
refined by Pearl and others (Pearl, 2009). Using DAGs make things explicit. If things
are explicit, they can be criticized. One threat to validity is of course that our scien-
tific model is wrong and AFP is not a mediator (Sect. 3.1.1). This is for the reader
to comment on. Of course, instead of using the graphical approach of DAGs, and
applying do-calculus to determine d-separation, one could walk down the road of
numerical approaches according to Peters et al. (2017).

Non-Identifiability. Through our non-identifiability analysis we concluded that
the variable Deleted should be removed. Removing this variable is a trade-off.
The non-identifiability analysis showed that it should be removed, thus allowing for
better understandability and better out of sample prediction. However, we could have
taken a more prudent approach and investigated Deleted’s role in predictions, but
in this particular case, we believe the initial analysis provided us with a convincing
argument to remove it.

Priors. The sensitivity analysis of priors provided us with confidence regarding
the choice of priors. We conducted prior predictive analysis and, together with
recommendations regarding default priors, concluded that our selection of priors
was balanced. However, our conclusions could be wrong, and further studies could
indicate that our priors are too broad. The latter is, however, what one can expect
when doing science.

Bayesian Data Analysis. In a Bayesian context, model comparison is often di-
vided into three categoriesM-open,M-complete, andM-closed (Yao et al., 2018;
Navarro, 2019). In theM-open world the relationship between the data generating
process and our list of modelsM = M1, . . . , MK is unknown. However, what we do
know is that Mt , our ‘true’ model, is not inM, and we cannot specify the explicit
form p(ỹ |y) due to computational or conceptual reasons. In theM-complete world,
Mt is also not inM, but we use any model inM that is closest in Kullback-Leibler
divergence (Yao et al., 2018; Betancourt, 2015). Finally, in the case of theM-closed
world, Mt ∈ M.

The bulk of statistical methodology is concerned with the latter category (M-
closed) and Clarke et al. (2013) claims that,

this class of problems is comparatively simple and well studied.

Many problems we face are in theM-complete and not theM-closed world (this
chapter is such an example). Selecting the ‘best’ model is often done through rela-
tive comparisons of M1, . . . , MK using the Watanabe-Akaike information criterion
(WAIC) or leave one out cross-validation with Pareto-smoothed importance sam-
pling (Vehtari et al., 2017). However, to use WAIC or PSIS-LOO for out of sample
prediction, one should use the same data set for each model (e.g., you can change
the likelihood and priors, but the data set is fixed).

In this chapter, we have not done model comparison (e.g., using PSIS-LOO (Ve-
htari et al., 2017)), but the reason is apparent—we use different data sets—which
is the purpose of this chapter. To this end we defend our choice of likelihood, i.e.,
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the Gamma-Poisson (a.k.a. negative binomial), epistemologically: If we have counts
from zero to infinity, where the variance is significantly different from the mean then,
from a maximum entropy point of view, Gamma-Poisson is a rational choice. By
conducting posterior predictive checks, we ultimately received yet another validation
to strengthen us in our opinion that the model has predictive capabilities (Sect. 3.3).

Residuals. One threat to validity is also the residuals of the model (fitting devia-
tion). If the residuals are too large, it is an indication that the model does not fit data
well. This is a trade-off since a perfect fit could imply overfitting. By conducting
posterior predictive checks, we concluded that the models, as such, had a convinc-
ing fit (see, e.g., Fig. 10). However, investigating the residuals for each estimated
parameter provides us with a better view.

In Fig. 15, we see estimates of the parameters with the most unobservable statis-
tical error. The residuals are linear, which indicates predictability in our imputation.
But, remember, Changed was judged to be the easiest to impute, but still Enquiry
and Interface provide less uncertainty considering residuals (Sect. 3.1.3)—that
is due to the imputation most likely. Nevertheless, in the end, we have employed
multi-level models when possible and, thus, taken a conservative approach by using
partial pooling. The latter should encourage us to put some trust in the model’s
ability to avoid overfitting, i.e., learn too much from our data.

Fig. 15 Residuals of three
parameters of interest

3.4.1 Common Threats in Software Analytics Papers

Finally, we believe that using the traditional threats to validity nomenclature seen in
empirical software engineering research most likely does not fit the type of studies
we present here. Instead we will propose something different.

Menzies and Shepperd (2019) presents 12 ‘bad smells’ in software analytics
papers. Below we will now cover each ‘smell’ and contrast it with what we did in
this chapter.

1. Not interesting. (Research that has negligible software engineering impact.) We
argue that the problem we have analyzed in this section is not only relevant,
common, and interesting. To this we mainly point to Sect. 4.
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2. Not using related work. (Unawareness of related work concerning RQs and
SOA.) We point to further reading (Sect. 4) as a basis for this study, i.e., studies
which throw away data, and show how other state of the art analytical approaches
might be more suitable.

3. Using deprecated and suspect data. (Using data out of convenience.) The data
is definitely suspect as we have shown by our analysis of data quality ratings,
but it would be hard to argue that the data is deprecated. However, we used a
particular version of the data set, but that was due to our intention to align with
previous work.

4. Inadequate reporting. (Partial reporting, e.g., only means.) In this section, we
have presented not only point estimates but also contrasted different distributions
and derived probabilistic statements. We would have also liked to provide model
comparisons but, alas, the design of this study did not allow this. To this end, we
rely on posterior predictive checks.

5. Under-powered experiments. (Small effect sizes and little theory.) Using more
data provides us with more statistical power, and we base our priors on state of
the art recommendations and logical conclusions, e.g., estimating that the world’s
population is part of a project is not appropriate.

6. p < 0.05 and all that. (Abuse of null hypothesis testing.) We mention p-values
only when making a point not to use them.

7. Assumptions of normality and equal variances. (impact of outliers and het-
eroscedasticity.) We use a Bayesian generalized linear model, which we model
using a Gamma-Poisson likelihood. Additionally, we employ multi-level models
when possible, and hence make use of partial pooling (which takes into account
the presence of outliers).

8. Not exploring stability. We conducted a sensitivity analysis of priors, and we
report on the differences between imputed and cleaned data sets.

9. No data visualization. We leave it up to the reader to decide if appropriate
levels of visualization were used. We have followed guidelines on data visualiza-
tion (Gabry et al., 2017).

10. Not tuning. We avoid bias in comparisons mainly by clearly stating our as-
sumptions, conducting a sensitivity analysis, making use of multi-level models,
and, generally speaking, following guidelines on how to conduct Bayesian data
analysis.

11. Not exploring simplicity. Using state of the art missing data analysis is needed
and wanted to decrease our bias. Additionally, using a complex mixture model
was unavoidable because of epistemological reasons, as presented earlier in this
section. We used simulated data to assess the appropriateness of our likelihood
and priors independently.

12. Not justifying choice of learner. This concerns, ultimately, the risk of over-
estimation (or over-fitting). We would argue that any usage of frequentist statistics
would potentially introduce this ‘smell’, i.e., using uniform priors, as is the case
in a traditional frequentist setting, ensures maximum over-fitting.
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3.5 Discussion

We argue that one should have solid reasons to throw away data since we now have
techniques available that can provide us with the opportunity to use as much data as
possible. The example we provided showed that by using missing data techniques, in
combination with Bayesian multi-level models, we could better make use of the data
and, thus, gain higher confidence concerning our findings. The inferences can become
weaker, but ask yourself if that is not how you think your fellow researchers should
conduct their analysis. We could show two things in our analysis: (i) Parameters’
‘significance’ changed depending on if we used imputation or not, and (ii) there was
really not much of a difference between the various data quality ratings (once again
indicating that we should use as much data as possible).

However, we pay a price for this more sophisticated analysis. It is a more involved
analysis compared to a frequentist analysis where only the likelihood of the outcome
is required to be specified, and maximum likelihood estimates are not conditioned
on the observed outcome; the uncertainty is instead connected to the sampling dis-
tribution of the estimator. The same applies to confidence intervals in the frequentist
world, i.e., one can set up a distribution of predictions, but it entails repeating the
process of random sampling on which we apply the estimator every time to then gen-
erate point predictions. Contrast this with conditioning on the posterior predictive
distribution, which is based on the observed outcome.

Additionally, making probabilistic statements is very much more natural when
having a posterior at hand, while the p-values we have made use of traditionally rely
on observing a z-statistic that is so large (in magnitude) if the null hypothesis is true,
i.e., not if the scientific hypothesis is true. To make the point, the term ‘p-value’
was used in this section for the first time here in this section and in our case, where
we used different data sets, one could have expected us to lean towards traditional
hypothesis testing, since it was not possible to compare models explicitly, regarding
out of sample predictions.

We will not further contrast our approach with how analyses are done in empirical
software engineering today. Suffice to say, issues such as the arbitrary α = .05 cut-
off, the usage of null hypothesis significance testing and the reliance on confidence
intervals have been criticized (Ioannidis, 2005b; Morey et al., 2016; Nuzzo, 2014;
Woolston, 2015), and when analyzing the arguments, we have concluded that many
of the issues plaguing other scientific fields are equally relevant to come to terms
with in empirical software engineering.

We believe that evidence-based interpretation is more straightforward with
Bayesian data analysis, and empirical software engineering should embrace it as
soon as possible. In our view, it is a natural choice to make in this particular case;
to base one’s inferences on more data is wise, and doing so in a Bayesian context is
natural.
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4 Recommended Further Reading

There are few early publications in software engineering where we see evidence of
using MLMs. In (Ehrlich and Cataldo, 2012) the authors used multilevel models for
assessing communication in global software development, while in (Hassan et al.,
2017), the authors applied MLMs for studying reviews in an app store. However,
both studies used a frequentist approach (maximum likelihood), i.e., not a Bayesian
approach.

As far as we can tell, there are only a few examples of studies in software engi-
neering that have applied BDA with MLMs to this date (Furia, 2016; Ernst, 2018).
Furia (2016) presents several cases of how BDA could be used in computer science
and software engineering research. In particular, the aspects of including prior be-
lief/knowledge in MLMs are emphasized, which is further elaborated on in (Furia
et al., 2019). Ernst (2018), on the other hand, presents a conceptual replication of an
existing study where he shows that MLMs support cross-project comparisons while
preserving local context, mainly through the concept of partial pooling, as used in
Bayesian MLMs.16

Finally, much literature on BDA exist, but not all have the clarity that is needed
to explain, sometimes, relatively complex concepts. If one would like to read up on
the basics of probability and Bayesian statistics we recommend (Jaynes, 2003), for a
slightly more in-depth view of Bayesian statistics we would recommend (Lambert,
2018). For a hands-on approach to BDA, we recommend (McElreath, 2015); McEl-
reath’s book Statistical Rethinking: A Bayesian Course with Examples in R and Stan
is an example of how seemingly complex issues can be explained beautifully, while
at the same time help the reader improve their skills in BDA. To conclude, there is
one book that every researcher should have on their shelf, Bayesian Data Analysis
by Gelman et al. (2013), which is considered the leading text on Bayesian methods.

Missing data can be handled in two main ways. Either we delete data using one
of three main approaches (listwise or pairwise deletion, and column deletion) or
we impute new data. Concerning missing data, we conclude the matter is not new
to the empirical software engineering community. Liebchen and Shepperd (2008)
have pointed out that the community needs more research into ways of identifying
and repairing noisy cases, and Mockus (2008) claims that the standard approach to
handle missing data, i.e., remove cases of missing values (e.g., listwise deletion), is
prevalent in empirical software engineering.

Two additional studies on missing data are, however, worthwhile pointing out.
Myrtveit et al. (2001) investigated listwise deletion, mean imputation, similar re-
sponse pattern imputation, and full information maximum likelihood (FIML), and
conclude that FIML is the only technique appropriate when data are not missing
completely at random. Finally, Cartwright et al. (2003) conclude that k-nearest
neighbor and sample mean imputation are significantly better in improving model
fit when dealing with imputation. However, much has happened concerning research
in imputation techniques lately.

16 Partial pooling takes into account variance between units.
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In this chapter, we focused on multivariate imputation by chained equations
(MICE), sometimes called fully conditional specification or sequential regression
multiple imputation, a technique that has emerged as a principled method of deal-
ing with missing data during the last decade (van Buuren, 2007). MICE specifies a
multivariate imputation model on a variable-by-variable basis by a set of conditional
densities (one for each incomplete variable) and draws imputations by reiterating the
conditional densities. The original idea behind MICE is old, see, e.g., stochastic re-
laxation (Geman and Geman, 1984), but the recent refinements and implementations
have made the technique easily accessible.

Finally, related work concerning the ISBSG data set is worthwhile pointing out.
Fernández-Diego and de Guevara (2014) present pros and cons of using the ISBSG
data set. A systematic mapping review was used as the research method, which
was applied to over 120 papers. The dependent variable of interest was usually
Effort (more than 70% of the studies), and the most frequently used methods were
regression (∼60%) and machine learning (∼35%), the latter a term where many
techniques can hide. Worth noting is also that Release 10 was used most frequently,
which provided us with a reason to also use that data set. Additionally, we also used
Effort as the dependent variable of interest, since a majority of the studies seem
to find that variable interesting to study. (The importance of the ISBSG data set,
when considering replication studies in empirical software engineering, has already
been pointed out by Shepperd et al. (2018).) By and large, our chapter took another
approach entirely, we imputed missing data in a Bayesian context, and we see this
more as complementary to some of the work mentioned above.

5 Conclusion

In this chapter, we introduced the reader to Bayesian data analysis. Before even
designing the model, we took several steps, each providing us with a better under-
standing of the data.We did a causal analysis, analyzed non-identifiability, performed
sensitivity analysis of priors, and an analysis of missing data. Additionally, we pre-
sented the reader with several diagnostics one should use for sanity checking a sta-
tistical model. Except for the missing data analysis (if no missingness is present), we
would argue that this is something one should always do when conducting Bayesian
data analysis.

Missing data was an additional complexity that our case presented. We rec-
ommend that one should always be conservative with throwing away data. Many
state of the art techniques exist today, which provides the researcher with ample of
possibilities to conduct rigorous, systematic, and transparent missing data analysis.
We followed a traditional imputation approach, but other approaches, i.e., purely
Bayesian, do exist. In our example, we showed that inferences can become weaker,
which is not a bad thing, and that the qualitative assessment of quality ratings can
be biased. This further strengthens the argument never to throw data away.
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By using Bayesian data analysis, we believe that researchers will be able to get a
more nuanced view of the challenges they are investigating. In short, we do not need
p-values for this.
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