Skip to main content

Lossless Image Compression Using List Update Algorithms

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11811))

Included in the following conference series:

Abstract

We consider lossless image compression using a technique similar to bZip2 for sequential data. Given an image represented with a matrix of pixel values, we consider different approaches for linearising the image into a sequence and then encoding the sequence using the Move-To-Front list update algorithm. In both linearisation and encoding stages, we exploit the locality present in the images to achieve encodings that are as compressed as possible. We consider a few approaches, and in particular Hilbert space-filling curves, for linearising the image. Using a natural model of locality for images introduced by Albers et al. [J. Comput. Syst. Sci. 2015], we establish the advantage of Hilbert space-filling curves over other linearisation techniques such as row-major or column-major curves for preserving the locality during the linearisation. We also use a result by Angelopoulos and Schweitzer [J. ACM 2013] to select Move-To-Front as the best list update algorithm for encoding the linearised sequence. In summary, our theoretical results show that a combination of Hilbert space-filling curves and Move-To-Front encoding has advantage over other approaches. We verify this with experiments on a dataset consisting of different categories of images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that each image has three color channels and hence the reported file sizes are three times the size of mono-chrome images associated with each color.

References

  1. Malathkara, N.V., Soni, S.K.: Low-complexity and lossless image compression algorithm for capsule endoscopy. In: Proceedings of the 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT) (2018)

    Google Scholar 

  2. Reddy, P., Reddy, V.R., Bindu, S.: The lossless medical image compression for telemedicine applications with delimiter. J. Adv. Res. Dyn. Control. Syst. 10(3), 74–79 (2018)

    Google Scholar 

  3. Murtagh, F., Louys, M., Starck, J.-L., Bonnarel, F.: Compression of grayscale scientific and medical image data. Data Sci. J. 1(1), 111–127 (2002)

    Article  Google Scholar 

  4. Martucci, S.A.: Reversible compression of HDTV images using median adaptive prediction and arithmetic coding. In: IEEE International Symposium on Circuits and Systems, pp. 1310–1313 (1990)

    Google Scholar 

  5. Xiaolin, W., Memon, N., Sayood, K.: A context-based, adaptive, lossless/nearly-lossless coding scheme for continuous-tone images. ISO/IEC JTC 1, 12 (1995)

    Google Scholar 

  6. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform. IEEE Trans. Image Process. 1(2), 205–220 (1992)

    Article  Google Scholar 

  7. Schiopu, I., Munteanu, A.: Residual-error prediction based on deep learning for lossless image compression. Electron. Lett. 54(17), 1032–1034 (2018)

    Article  Google Scholar 

  8. Ahanonu, E., Marcellin, M., Bilgin, A.: Lossless image compression using reversible integer wavelet transforms and convolutional neural networks. In: 2018 Data Compression Conference, p. 395 (2018)

    Google Scholar 

  9. Elias, P.: Universal codeword sets and the representation of the integers. IEEE Trans. Inf. Theory 21, 194–203 (1975)

    Article  MathSciNet  Google Scholar 

  10. Seward, J.: bZip2 compression program. http://www.bzip.org/

  11. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical report 124, DEC SRC (1994)

    Google Scholar 

  12. Lempel, A., Ziv, J.: Compression of two-dimensional data. IEEE Trans. Inf. Theory 32(1), 2–8 (1986)

    Article  Google Scholar 

  13. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

    Article  MathSciNet  Google Scholar 

  14. Liang, J.-Y., Chen, C.-S., Huang, C.-H., Liu, L.: Lossless compression of medical images using Hilbert space-filling curves. Comput. Med. Imaging Graph. 32(3), 174–182 (2008)

    Article  Google Scholar 

  15. Collin, L.: A Quick Benchmark: Gzip vs. Bzip2 vs. LZMA (2005)

    Google Scholar 

  16. Klausmann, T.: Gzip, Bzip2 and LZMA compared (2008). Blog Archives. https://web.archive.org/web/20130106193958/http://blog.i-no.de/archives/2008/05/08/index.html

  17. Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 258–267. ACM (2002)

    Google Scholar 

  18. Angelopoulos, S., Schweitzer, P.: Paging and list update under bijective analysis. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1136–1145. SIAM (2009)

    Google Scholar 

  19. Sagan, H.: Space-Filling Curves. Springer, New York (2012)

    MATH  Google Scholar 

  20. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the clustering properties of the Hilbert space-filling curve. IEEE Trans. Knowl. Data Eng. 13(1), 124–141 (2001)

    Article  Google Scholar 

  21. Mokbel, M.F., Aref, W.G., Kamel, I.: Analysis of multi-dimensional space-filling curves. GeoInformatica 7(3), 179–209 (2003)

    Article  Google Scholar 

  22. Butz, A.R.: Convergence with Hilbert’s space filling curve. J. Comput. Syst. Sci. 3(2), 128–146 (1969)

    Article  MathSciNet  Google Scholar 

  23. Kamata, S., Eason, R.O., Bandou, Y.: A new algorithm for N-dimensional Hilbert scanning. IEEE Trans. Image Process. 8(7), 964–973 (1999)

    Article  MathSciNet  Google Scholar 

  24. Kamali, S., López-Ortiz, A.: A survey of algorithms and models for list update. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday. LNCS, vol. 8066, pp. 251–266. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40273-9_17

    Chapter  Google Scholar 

  25. Bentley, J.L., Sleator, D., Tarjan, R.E., Wei, V.K.: A locally adaptive data compression scheme. Commun. ACM 29, 320–330 (1986)

    Article  MathSciNet  Google Scholar 

  26. Dorrigiv, R., López-Ortiz, A., Ian Munro, J.: An application of self-organizing data structures to compression. In: Proceedings of the 8th International Symposium on Experimental Algorithms (SEA), vol. 5526, pp. 137–148 (2009)

    Google Scholar 

  27. Kamali, S., Ladra, S., López-Ortiz, A., Seco, D.: Context-based algorithms for the list-update problem under alternative cost models. In: Data Compression Conference (DCC), pp. 361–370 (2013)

    Google Scholar 

  28. Kamali, S., López-Ortiz, A.: Better compression through better list update algorithms. In: Data Compression Conference (DCC), pp. 372–381 (2014)

    Google Scholar 

  29. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equivalence of paging strategies and other online algorithms. Algorithmica 81(3), 1152–1179 (2019)

    Article  MathSciNet  Google Scholar 

  30. Angelopoulos, S., Schweitzer, P.: Paging and list update under bijective analysis. J. ACM 60(2), 7:1–7:18 (2013)

    Article  MathSciNet  Google Scholar 

  31. Kim, S., Cho, N.I.: Hierarchical prediction and context adaptive coding for lossless color image compression. IEEE Trans. Image Process. 23(1), 445–449 (2014)

    Article  MathSciNet  Google Scholar 

  32. Malvar, H.S., Sullivan, G.J.: Progressive-to-lossless compression of color-filter-array images using macropixel spectral-spatial transformation. In: Data Compression Conference (DCC 2012), pp. 3–12 (2012)

    Google Scholar 

  33. Zhang, N., Xiaolin, W.: Lossless compression of color mosaic images. IEEE Trans. Image Process. 15(6), 1379–1388 (2006)

    Article  Google Scholar 

  34. Weinberger, M.J., Seroussi, G., Sapiro, G.: From LOCO-I to the JPEG-LS standard. Hewlett Packard Laboratories (1999)

    Google Scholar 

  35. Meyer, B., Tischer, P.: TMW-a new method for lossless image compression. ITG-Fachbericht, pp. 533–540 (1997)

    Google Scholar 

  36. Li, X., Orchard, M.T.: Edge-directed prediction for lossless compression of natural images. IEEE Trans. Image Process. 10(6), 813–817 (2001)

    Article  Google Scholar 

  37. Chianphatthanakit, C., Boonsongsrikul, A., Suppharangsan, S.: A lossless image compression algorithm using differential subtraction chain. In: International Conference on Knowledge and Smart Technology (KST), pp. 84–89 (2018)

    Google Scholar 

  38. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Image Process. 41(12), 3445–3462 (1993)

    Article  Google Scholar 

  39. Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Process. 9(7), 1158–1170 (2000)

    Article  MathSciNet  Google Scholar 

  40. Robert Calderbank, A., Daubechies, I., Sweldens, W., Yeo, B.-L.: Lossless image compression using integer to integer wavelet transforms. In: International Conference on Image Processing, vol. 1, pp. 596–599 (1997)

    Google Scholar 

  41. Pan, H., Siu, W.C., Law, N.F.: Lossless image compression using binary wavelet transform. IET Image Process. 1(4), 353 (2007)

    Article  Google Scholar 

  42. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100(1), 90–93 (1974)

    Article  MathSciNet  Google Scholar 

  43. Mandyam, G., Ahmed, N., Magotra, N.: Lossless image compression using the discrete cosine transform. J. Vis. Commun. Image Represent. 8(1), 21–26 (1997)

    Article  Google Scholar 

  44. Starosolski, R.: Simple fast and adaptive lossless image compression algorithm. Softw. Pract. Exp. 37(1), 65–91 (2007)

    Article  Google Scholar 

  45. Zalik, B., Lukac, N.: Chain code lossless compression using move-to-front transform and adaptive run-length encoding. Signal Process. Image Commun. 29(1), 96–106 (2014)

    Article  Google Scholar 

  46. Triantafyllidis, G.A., Strintzis, M.G.: A context based adaptive arithmetic coding technique for lossless image compression. IEEE Signal Process. Lett. 6(7), 168–170 (1999)

    Article  Google Scholar 

  47. Wu, X., Memon, N.: CALIC-a context based adaptive lossless image codec. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1996, vol. 4, pp. 1890–1893 (1996)

    Google Scholar 

  48. Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Springer, New York (1992)

    Google Scholar 

  49. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an overview. IEEE Trans. Consum. Electron. 46(4), 1103–1127 (2000)

    Article  Google Scholar 

  50. Abu Taleb, S.A., Musafa, H.M.J., Khtoom, A.M., Gharaybih, I.K.: Improving LZW image compression. Eur. J. Sci. Res 44(3), 502–509 (2010)

    Google Scholar 

  51. Sneyers, J., Wuille, P.: FLIF: free lossless image format based on MANIAC compression. In: IEEE International Conference on Image Processing (ICIP), pp. 66–70 (2016)

    Google Scholar 

  52. Morton, G.M.: A computer oriented geodetic data base and a new technique in file sequencing. International Business Machines (1966)

    Google Scholar 

  53. Pajarola, R., Widmayer, P.: An image compression method for spatial search. IEEE Trans. Image Process. 9(3), 357–365 (2000)

    Article  Google Scholar 

  54. Pinto, A., Seco, D., Gutiérrez, G.: Improved queryable representations of rasters. In: Data Compression Conference (DCC), pp. 320–329 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Kamali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdollahi, A., Bruce, N., Kamali, S., Karim, R. (2019). Lossless Image Compression Using List Update Algorithms. In: Brisaboa, N., Puglisi, S. (eds) String Processing and Information Retrieval. SPIRE 2019. Lecture Notes in Computer Science(), vol 11811. Springer, Cham. https://doi.org/10.1007/978-3-030-32686-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32686-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32685-2

  • Online ISBN: 978-3-030-32686-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics