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Abstract. Automatic segmentation of abdomen organs using medical
imaging has many potential applications in clinical workflows. Recently,
the state-of-the-art performance for organ segmentation has been achieved
by deep learning models, i.e., convolutional neural network (CNN). How-
ever, it is challenging to train the conventional CNN-based segmentation
models that aware of the shape and topology of organs. In this work,
we tackle this problem by introducing a novel end-to-end shape learning
architecture – organ point-network. It takes deep learning features as in-
puts and generates organ shape representations as points that located on
organ surface. We later present a novel adversarial shape learning objec-
tive function to optimize the point-network to capture shape information
better. We train the point-network together with a CNN-based segmenta-
tion model in a multi-task fashion so that the shared network parameters
can benefit from both shape learning and segmentation tasks. We demon-
strate our method with three challenging abdomen organs including liver,
spleen, and pancreas. The point-network generates surface points with
fine-grained details and it is found critical for improving organ segmen-
tation. Consequently, the deep segmentation model is improved by the
introduced shape learning as significantly better Dice scores are observed
for spleen and pancreas segmentation.

Keywords: Abdomen Organ Segmentation, Shape Learning, Surface
Point Generation, Adversarial Learning

1 Introduction

Automatic organ segmentation is becoming an increasingly important technique
providing supports for routine clinical diagnoses and treatment plannings. Or-
gan segmentation in medical images, e.g., computed tomography (CT) and mag-
netic resonance imaging (MRI), is usually formulated as a voxel-wise classifica-
tion problem. Recently, deep learning methods (e.g., fully convolutional network
(FCN) based segmentation [6,2,7]) have been reported as powerful baselines to
various segmentation tasks, where the deep learning methods can perform reli-
ably on the majority cases. However, segmentation error often occur near the
organ surface largely due to low image quality, vague organ boundaries, and
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large organ shape variation. Although several attempts [1,9] have been reported
in the literature, it is still challenging for deep learning models to produce seg-
mented results with smooth and realistic shapes as it would require strong global
reasoning ability to model relations between all image voxels.

We propose a shape learning network – organ point-network to improve
the segmentation performance of FCN-based methods. The organ point-network
takes deep learning features as its inputs and the deep learning features are ex-
tracted from raw 3D medical images by 3D convolutional neural network layers.
The point-network outputs shape representations of target organs, where the
shape representations are defined as sets of points locating on organ surface.
The idea of point-network is inspired by a point set generator that proposed by
Fan et al. [3]. In [3], the point generator is built with 2D convolutional neural
network layers. It takes 2D images and segmentation masks as its inputs and
outputs sets of points as 3D reconstructions of target objects. To obtain 3D
reconstruction from 2D images, it requires to introduce moderate level of un-
certainty. Thus, the point generator in [3] uses only coarse-scale features from
the top network layer. Therefore, it generates points that lacks of fine-grained
shape details. Differently, the 3D organ segmentation setup requires our organ
point-network to process 3D information and to use only the deep features due
to the lack of available segmentation masks. Besides, the organ point-network
needs to reconstruct organ accurately with recovering as may shape details as
possible, otherwise, the segmentation model could be significantly distracted by
the inaccurate shape information under the multi-task learning context.

In this work, we introduce shape learning to improve 3D FCN-based organ
segmentation. We summarize our contributions as, 1) we evaluate the multi-
task learning mechanism, which jointly optimizes the segmentation task with
the shape learning task and improves the segmentation results; 2) we propose
a novel organ point-network and a effective adversarial learning strategy for
accurate organ reconstruction; 3) we demonstrate our method with extensive
experiments and report significant segmentation improvements.

2 Method

2.1 Multi-task Learning

In our multi-task learning setup, the proposed organ point-network is jointly
optimized with FCN-base segmentation model. Fig. 1 shows the pipeline of the
proposed multi-task learning. The pipeline consists of a 3D FCN backbone, a
segmentation loss branch, and a shape learning branch. Specifically, the 3D FCN
backbone is built with 3D convolutional layers and it extracts deep features
from 3D CT inputs. Resolution of the deep features ranges from coarse to fine,
where the coarse-scale feature contains more high-level representations and less
image details, while the fine-scale feature has more image details but less high-
level representations. In the pipeline, the segmentation loss branch takes the
fine-scale feature into a Sigmoid activation layer and outputs the segmentation
results. The shape learning branch contains the proposed organ point-network
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Fig. 1: Pipeline of the proposed multi-task learning.

and adversarial evaluator. It takes the multi-scale deep features and outputs
organ surface points.

2.2 Organ Point-network

We design the organ point-network to take multi-scale deep features as its in-
puts. It first initializes points using the coarsest-scale feature and then fine-tunes
the location of each point using the fine-scale features to factor in local shape
information. Fig. 2 shows the network configuration of the proposed organ point-
network. To name the network components, we denote the coarse-scale feature
input as XC , and the fine-scale feature input as XF . We formulate the points
initialization procedure as a mapping function Fi(·; θi), where θinit is the set of
network parameters. Similarly, we define the first and second points refinement
procedures as Fr1(·; θr1), and Fr2(·; θr2), respectively. We propose a “feature
index” network layer and refer to it asMFI(·). For presentation clarity, we omit
the standard network components, such as ReLU, Sigmoid activation, Batch-
Normalization, and element-wise summation layers. The point set is presented
as a NP by 3 matrix, where NP presents the number of points and 3 is the
dimension. The point size NP is fixed along the initial and refined point sets.

The points P ∈ RNP×3 is initialized as

P = Fi(XC ; θi), (1)

where the coarse-scale feature XC is from the top layer of the 3D FCN backbone.
As passed through multiple 3D convolution and spatial pooling layers, each voxel
in XC should represent the aggregated information of a sub-region from the
input image. In other words, the coarse-scale feature XC contains high-level
image representations of the image but lacks of local details. Thus, points in P
present only a rough shape of the target organ lacking of details. Fig. 1 shows
an example of the initial points.
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Fig. 2: Architecture configuration of the proposed organ point-network.

Later, the point-network refines each point in P using the fine-scaled feature
and this procedure is referred as “points refinement” in Fig. 2. A “feature index”
layer MFI(·) is defined to extract point-wise local feature,

fi = MFI(XF , pi), (2)

where pi ∈ R1×3 is the i-th point in P , and fi is the indexed local feature.
The three coordinates in pi are normalized values in the range [0, 1]. Thus, MFI

first scale the three coordinates in pi with the width, height, and depth of XF ,
respectively. Then, MFI extracts the 3×3×3 sub-region in XF that centered
at the scaled pi location. The extracted 3×3×3 sub-region contains local image
information at position pi and it is flattened as fi. Like standard pooling layers,
the “feature index” layer processes only indexing operations and no network
parameter need to be learned, thus the point-network with “feature index” layers
can be trained end-to-end.

Given the fact that the indexed feature fi contains only local image informa-
tion, learning of local point movement would be inherently easier than predicting
the global coordinate. Thus to refine point pi, we formulate the refinement as a
residual learning

pi = pi + Fr1(fi; θr1). (3)

It is implemented via a “Skip-Connection” between the points initialization mod-
ule and the points refinement module (see Fig. 2). Thus, the “points refinement”
is a combination of Eq. 2 and Eq. 3 and its matrix form is

P = P + Fr1(MFI(XF , P ); θr1). (4)

Practically, some of the initial points would locate close to the actual organ
surface while the others could be far away. Therefore, a second “points refine-
ment” is required in the point-network to secure the convergence. In the same
spirit of the first refinement, we formulate the second refinement as

P = P + Fr2(MFI(XF , P ); θr2). (5)

There is a “Skip-Connection” between the first and second refinements.
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Fig. 3: Architecture configuration of the points classification network.

2.3 Adversarial Evaluator

In this section, we discuss point-based training objectives to train the proposed
point-network. In [3], Fan et al. uses Chamfer distance (CD), Earth Mover’s dis-
tance (EMD) for shape learning. These objectives first find one-versus-one point
correspondence between the predicted points P and the ground-truth points Pgt

(where Pgt ∈ RNp×3). Then, difference between the paired predicted point and
group-truth point is calculated and the mean difference of the NP point pairs is
used as prediction error that back-propagated to update the network parame-
ters. Due to the calculation of mean differences, these objectives are not sensitive
to outliers, which lie far away from the organ surface. Thus, we further propose
a novel adversarial learning (AL) loss that works complementary to the CD and
EMD metrics to remove the outlier points. During model training, the proposed
adversarial loss can be jointly optimized with CD, and EMD losses.

In the adversarial evaluator, a point set classifier is trained to differentiate
the generated points P and ground truth points Pgt. The classifier would project
the points onto the manifold of the target anatomy. Fig. 3 shows the architecture
configuration of the points classification network. The classifier takes NP by 3
points matrix as input and outputs its tag of the input point set. In the classifier,
we use “transformation” layers proposed in [5], so that the learned representation
by the point set in invariant to geometric transformations. We define the classifier
as D(·; θD), and labels for the generated points P and ground truth points Pgt

are 0 and 1, respectively. Then, the loss function for adversarial learning is,

LAL = H(D(P ; θD), 0) +H(D(P̂gt; θD), 1), (6)

where H(·, ·) is the cross entropy loss function, and P̂gt are the ground truth
points Pgt with randomly added noise that generated from a specified range
(i.e. [−0.005, 0.005] in our experiments). The noise is applied to balance the
classifier’s convergence speed over P and Pgt.

3 Experiments and Analyses

Data preparation: To demonstrate the proposed shape learning method, we
test three abdomen organs, including liver, pancreas, and spleen. These datasets
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are publicly available from a organ segmentation competition3 and contain 131,
281, and 41 voxel-wise annotated CT volumes for liver, pancreas, and spleen,
respectively. For each organ, we randomly separate the images into 50%, 25%,
and 25% for training, validating, and testing. To evaluate the effectiveness of
the proposed organ point-network, the target organ in each CT volume is center
cropped to preserve the whole organ shape information. To include sufficient
image background, 20-voxel padding is added to each direction of the cropped
volume. Based on the sizes of organs, liver and pancreas volumes are down-
sampled to 128×128×128 and spleen volumes are down-sampled 32×128×128.
Using the original image resolution for training and testing may obtain better
performance, however, we fit the segmentation model, point-network, and points
classifier into a single GPU for computation stability, and we mainly focus on
the segmentation improvements from the proposed 3D shape learning.

To generate ground truth points Pgt, we fuse the organ and lesion an-
notations to generate the outer organ surface, on which ground truth surface
points are generated using the marching cubes algorithm and farthest point
sampling [3]. The size of the point set NP is empirically set to 2048 in all exper-
iments. The using of P to reconstruct segmentation mask has its own challenges
and is out the scope of this paper. Here, we focus on comparing results from
segmentation networks that are trained with and without point set generation.

Implementation details: We use 3D U-Net [2] as the universal back-
bone for all segmentation models. It consists of totally 3 times symmetric down-
sampling and up-sampling, which are performed by stride 2 max-poling and
nearest up-sampling, respectively. Based on the multi-scale features extracted
by the 3D U-Net, we construct the proposed organ point-network and point
classifier with the architectures as shown in Fig. 2 and Fig. 3, respectively. Net-
work parameters are initialized with Xavier and trained with Adam optimizer.
We set the learning rate as 5e-4. The batch-size is fixed to 1 due to the lim-
itation of GPU memory. Since models may converge differently, we train each
model with sufficient number of epochs until it gains no performance improve-
ment on the validation set. We then select the model checkpoint with the best
validation performance to report the testing result. All the experiments have
been conducted on a NVIDIA TITAN X GPU.

We consider the 3D U-Net as a strong 3D FCN backbone. Using 100% im-
ages, the best solution [4] reported in the segmentation competition has reported
95.2% Dice scores for liver segmentation. In our experiments, only 50% of the im-
ages is applied for model training and the rest is used for validating and testing.
However, the 3D U-Net still achieves 94.1% Dice score.

Firstly, we evaluate the proposed point-network and adversarial learning
(AL) loss with quantitative and qualitative analyses. A state-of-the-art point
generator – Two-Branch [3] is choose to be the baseline. The Two-Branch model
is designed to map 2D images into points using only the global image informa-
tion. We modify its 2D convolutional network layers with 3D convolutions so
that it can process 3D CT volumes. We follow that same setting in [3] and nor-

3 http://medicaldecathlon.com

http://medicaldecathlon.com
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Table 1: Evaluation of generated points with EMD, which is shown as mean±sd.

Method Liver Spleen Pancreas

Two-Branch 1.66±1.19 4.3±1.4 9.7±6.8

Point-Network
w/o Adversarial-Loss 0.72±0.44 5.2±2.4 9.1±7.7
with Adversarial-Loss 0.69±0.39 3.8±1.9 8.4±7.4
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Fig. 4: Visualization of generated points.

malize coordinates of each point cloud into the range of (0,1) and measure the
difference between generated and ground truth points with Earth Mover’s dis-
tance (EMD). In Table 1, we present quantitative assessment of different point
generation methods. We also present visual examples in Fig. 4. The Two-Branch
model performs as a strong baseline outperforming the proposed Point-Network
(without AL-loss) for spleen shape learning. However, for organs with more com-
plex surfaces, it is observed that the “point refinement” in point-network has
improved the generated points with lots of details. The point-network reduces
the mean EMD score for liver from 1.66 to 0.72, and for pancreas from 9.7 to
9.1. Fig. 4a shows the ground-truth, Two-Branch generated points, and point-
network generated points. Comparing point-networks trained with and without
AL-loss, we observe systematical improvements. The AL-loss have reduced mean
EMD scores for liver, pancreas, and spleen by 4%, 7% and 27%. As shown in
Fig. 4b, AL-loss has significantly reduced the number of outlier points.

In the second experiment, we evaluate segmentation results with Dice us-
ing the original CT spacing and report Hausdorff distance (HD), and Average
distance (AVGD) [8] in voxel. We compare 3D U-Nets trained with and without
point generators, which should introduce shape learning to affect the segmen-
tation performance. Quantitative result shown in Table 2 demonstrate that 3D
U-Net can be improved by its attached point generators. The proposed Point-
network has significantly4 improved the Dice scores of spleen and pancreas seg-
mentation. However, we also observe performance degradation when the Two-

4 P-value < 0.05 in Wilcoxon Signed rank test.
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Table 2: Evaluation of organ segmentation with Dice similarity (DICE), Haus-
dorff distance (HD), and average distance (AVGD) which are shown in the form
of mean±sd. We use bold to indicate experiment sets where 3D U-Net is outper-
formed and italic bold to indicate improvements with statistical significance.

Metric Organ 3D U-Net Two-Branch Ours

Dice
Liver 0.941±0.034 0.925±0.050 0.944±0.034

Spleen 0.955±0.014 0.934±0.043 0.960±0.007
Pancreas 0.732±0.120 0.734±0.139 0.743±0.122

HD [voxels]
Liver 35.862±17.960 39.041±20.061 31.365±15.576

Spleen 6.889±1.998 7.482±3.454 6.632±2.543
Pancreas 25.406±17.953 22.653±13.109 22.723±12.536

AVGD [voxels]
Liver 0.325±0.436 0.453±0.506 0.273±0.322

Spleen 0.061±0.033 0.101±0.078 0.051±0.016
Pancreas 1.080±1.050 1.074±1.104 0.997±0.991

Branch is applied for liver and spleen segmentation. Based on this observation,
we argue that accurate shape learning is critical for improving the segmentation
performance, otherwise, it will bring unwanted performance loss. Compared with
Two-Branch model, the proposed Point-network generator performs much more
stable and robustly improves the 3D U-Net on the three organs in terms of all
evaluation metrics.

4 Conclusion

In this paper, we presented a multi-task deep learning model for shape learning
and abdomen organ segmentation. Under the multi-task context, the proposed
shape learning model – point-network uses multi-scale deep learning features
from the segmentation model to generate organ surface points with fine-grained
details. A novel adversarial learning strategy is introduces to improve the gener-
ated points with less outliers. The shape learning then improves the intermediate
network layers of the segmentation model and improves organ segmentation. The
effectiveness of the proposed method has been demonstrated by experiments of
three challenging abdominal organs including liver, spleen, and pancreas.
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