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M. Jorge Cardoso2, and Andrew Feng1

1 NVIDIA
2 Biomedical Engineering and Imaging Sciences, King’s College London, UK

Abstract. Due to medical data privacy regulations, it is often infeasible
to collect and share patient data in a centralised data lake. This poses
challenges for training machine learning algorithms, such as deep convo-
lutional networks, which often require large numbers of diverse training
examples. Federated learning sidesteps this difficulty by bringing code to
the patient data owners and only sharing intermediate model training up-
dates among them. Although a high-accuracy model could be achieved by
appropriately aggregating these model updates, the model shared could
indirectly leak the local training examples. In this paper, we investigate
the feasibility of applying differential-privacy techniques to protect the
patient data in a federated learning setup. We implement and evaluate
practical federated learning systems for brain tumour segmentation on
the BraTS dataset. The experimental results show that there is a trade-
off between model performance and privacy protection costs.

1 Introduction

Deep Neural Networks (DNN) have shown promising results in various medical
applications, but highly depend on the amount and the diversity of training
data [10]. In the context of medical imaging, this is particularly challenging
since the required training data may not be available in a single institution due
to the low incidence rate of some pathologies and limited numbers of patients.
At the same time, it is often infeasible to collect and share patient data in a
centralised data lake due to medical data privacy regulations.

One recent method that tackles this problem is Federated Learning (FL) [6,8]:
it allows collaborative and decentralised training of DNNs without sharing the
patient data. Each node trains its own local model and, periodically, submits
it to a parameter server. The server accumulates and aggregates the individ-
ual contributions to yield a global model, which is then shared with all nodes.
It should be noted that the training data remains private to each node and is
never shared during the learning process. Only the model’s trainable weights or
updates are shared, thus keeping patient data private. Consequently, FL suc-
cinctly sidesteps many of the data security challenges by leaving the data where
they are and enables multi-institutional collaboration.
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Fig. 1: Left: illustration of the federated learning system; right: distribution of the
training subjects (N = 242) across the participating federated clients (K = 13)
studied in this paper.

Although FL can provide a high level of security in terms of privacy, it is still
vulnerable to misuse such as reconstructions of the training examples by model
inversion. One effective countermeasure is to inject noise to each node’s training
process, distort the updates and limit the granularity of information shared
among them [1,9]. However, existing privacy-preserving research only focuses on
general machine learning benchmarks such as MNIST, and uses vanilla stochastic
gradient descent algorithms.

In this work, we implement and evaluate practical federated learning sys-
tems for brain tumour segmentation. Throughout a series of experiments on
the BraTS 2018 data, we demonstrate the feasibility of privacy-preserving tech-
niques. Our primary contributions are: (1) implement and evaluate, to the best of
our knowledge, the first privacy-preserving federated learning system for medical
image analysis; (2) compare and contrast various aspects of federated averaging
algorithms for handling momentum-based optimisation and imbalanced training
nodes; (3) empirically study the sparse vector technique for a strong differential
privacy guarantee.

2 Method

We study FL systems based on a client-server architecture (illustrated in Fig. 1
(left)) implementing the federated averaging algorithm [6]. In this configuration,
a centralised server maintains a global DNN model and coordinates clients’ local
stochastic gradient descent (SGD) updates. This section presents the client-side
model training procedure, the server-side model aggregation procedure, and the
privacy-preserving module deployed on the client-side.

2.1 Client-side model training

We assume each federated client has a fixed local dataset and reasonable com-
putational resources to run mini-batch SGD updates. The clients also share
the same DNN structure and loss functions. The proposed training procedure is
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Algorithm 1 Federated learning: client-side training at federated round t.

Require: local training data D = {xi, yi}Nc
i=1, num local epochs

Require: learning rate η, decay rates β1, β2, small constant ε
Require: loss function ` defined on training pairs (x, y) parameterised by W
1: procedure local training(global model W (t))
2: Set initial local model: W (0,t) ←W (t)

3: Initialise momentum terms: m(0) ← 0, v(0) ← 0
4: Compute number of local iterations: N (local) ← Nc · num local epochs
5: for l← 1 · · ·N (local) do . Training with Adam optimiser
6: Sample a training batch: B(l) ∼ D
7: Compute gradient: g(l) ← ∇`(B(l);W (l−1,t))
8: Compute 1st moment: m(l) ← β1 ·m(l−1) + (1− β1) · g(l)
9: Compute 2nd moment: v(l) ← β2 · v(l−1) + (1− β2) · g(l) · g(l)

10: Compute bias-corrected learning rate: η(l) ← η ·
√

1− βl
2/(1− βl

1)

11: Update local model: W (l,t) ←W (l−1,t) − η(l) ·m(l)/(
√
v(l) + ε)

12: end for
13: Compute federated gradient: ∆W (t) ←W (l,t) −W (0,t)

14: ∆Ŵ (t) ← PRIVACY PRESERVING(∆W (t))
15: return ∆Ŵ (t) and N (local) . Upload to server
16: end procedure

listed in Algorithm 1. At federated round t, the local model is initialised by read-
ing global model parameters W (t) from the server, and is updated to W (l,t) by
running multiple iterations of SGD. After a fixed number of iterations N (local),
the model difference ∆W (t) is shared with the aggregation server.

DNNs for medical image are often trained with a momentum-based SGD.
Introducing the momentum terms takes the previous SGD steps into account
when computing the current one. It can help accelerate the training and reduce
oscillation. We explore the choices of design for handling these terms in FL. In
the proposed Algorithm 1 (exemplified with Adam optimiser [4]), we re-initialise
each client’s momentums at the beginning of each federated round (denoted as
m. restart). Since local model parameters are initialised from the global ones,
which aggregated information from other clients, the restarting operation effec-
tively clears the clients’ local states that could interfere the training process. This
is empirically compared with (a) clients maintaining a set of local momentum
variables without sharing; denoted as baseline m. (b) treating the momentum
variables as a part of the model, i.e., the variables are updated locally and ag-
gregated by the server (denoted as m. aggregation). Although m. aggregation

is theoretically plausible [11], it requires the momentums to be released to the
server. This increases both communication overheads and data security risks.

2.2 Client-side privacy-preserving module

The client-side is designed to have full control over which data to share and
local training data never leave the client’s site. Still, model inversion attacks

such as [3] can potentially extract sensitive patient data from the update ∆W
(t)
k



4 W. Li et al.

Algorithm 2 Federated learning: client-side differential privacy module.

Require: privacy budgets for gradient query, threshold, and answer ε1, ε2, ε3
Require: sensitivity s, gradient bound and threshold γ, τ , proportion to release Q
Require: number of local training iterations N (local)

1: procedure privacy preserving(∆W )
2: Normalise by iterations: ∆W ← ∆W/N (local)

3: Compute number of parameters to share: q ← Q · size(∆W )
4: Track parameters to release: ∆Ŵ ← empty set
5: Compute a noisy threshold: ĥ← h+ Lap( s

ε2
)

6: while size(∆Ŵ ) < q do
7: Randomly draw a gradient component wi from ∆W
8: if abs(clip(wi, γ)) + Lap( 2qs

ε1
) ≥ ĥ then

9: Compute a noisy answer: wi ← clip(wi + Lap( qs
ε3

), γ)

10: Release the answer: append wi to ∆Ŵ
11: end if
12: end while
13: Undo normalisation: ∆Ŵ ← ∆Ŵ ∗N (local)

14: return ∆Ŵ
15: end procedure

or the model W (t) during federated training. We adopt a selective parameter
update [9] and the sparse vector technique (SVT) [5] to provide strong protection
against indirect data leakage.

Selective parameter sharing The full model at the end of a client-side
training process might have over-fitted and memorised local training examples.
Sharing this model poses risks of revealing the training data. Selective parameter
sharing methods limit the amount of information that a client shares. This is

achieved by (1) only uploading a fraction of ∆W
(t)
k : component wi of ∆W

(t)
k

will be shared iif abs(wi) is greater than a threshold τ
(t)
k ; (2) further replacing

∆W
(t)
k by clipping the values to a fixed range [−γ, γ]. Here abs(x) denotes the

absolute value of x; τ
(t)
k is chosen by computing the percentile of abs(∆W

(t)
k ); γ

is independent of specific training data and can be chosen via a small publicly
available validation set before training. Gradient clipping is also applied, which
is a widely-used method, acting as a model regulariser to prevent over-fitting.

Differential privacy module The selective parameter sharing can be fur-
ther improved by having a strong differential privacy guarantee using SVT. The
procedure of selecting and sharing distorted components of wi is described in

Algorithm 2. Intuitively, instead of simply thresholding abs(∆W
(t)
k ) and sharing

its components wi, every sharing wi is controlled by the Laplacian mechanism.
This is implemented by first comparing a clipped and noisy version of abs(wi)
with a noisy threshold τ (t) + Lap(s/ε2) (Line 8, Algorithm 2), and then only
sharing a noisy answer clip(wi + Lap(qs/ε3), γ), if the thresholding condition is
satisfied. Here Lap(x) denotes a random variable sampled from the Laplace dis-
tribution parameterised by x; clip(x, γ) denotes clipping of x to be in the range
of [−γ, γ]; s denotes the sensitivity of the federated gradient which is bounded by
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Algorithm 3 Federated learning: server-side aggregation of T rounds.

Require: num federated rounds
1: procedure Aggregating
2: Initialise global model: W (0)

3: for t← 1 · · ·T do
4: for client k ← 1 · · ·K do . Run in parallel
5: Send W (t−1) to client k
6: Receive (∆W

(t−1)
k , N

(local)
k ) from client’s LOCAL TRAINING(W (t−1))

7: end for
8: W (t) ←W (t−1) + 1∑

k N
(local)
k

∑
k (N

(local)
k ·∆W (t−1)

k )

9: end for
10: return W (t)

11: end procedure

γ in this case [9]. The selection procedure is repeated until q fraction of ∆W
(t)
k

is released. This procedure satisfies (ε1 + ε2 + ε3)-differential privacy [5].

2.3 Server-side model aggregation

The server distributes a global model and receives synchronised updates from all
clients at each federated round (Algorithm 3). Different clients may have different
numbers of local iterations at round t, thus the contributions from the clients
could be SGD updates at different training speeds. It is important to require an
N (local) from the clients, and weight the contributions when aggregating them
(Line 8, Algorithm 3). In the case of partial model sharing, utilising the sparse

property of ∆W
(t)
k to reduce the communication overheads is left for future work.

3 Experiments

This section describes the experimental setup, including the common hyper-
parameters used for each FL system.

Data preparation The BraTS 2018 dataset [2] contains multi-parametric
pre-operative MRI scans of 285 subjects with brain tumours. Each subject was
scanned with four modalities, i.e. (1) T1-weighted, (2) T1-weighted with contrast
enhancement, (3) T2-weighted, and (4) T2 fluid-attenuated inversion recovery
(T2-FLAIR). Each subject was associated with voxel-level annotations of “whole
tumour”, “tumour core”, and “enhancing tumour”. For details of the imaging
and annotation protocols, we refer the readers to Bakas et al. [2]. The dataset was
previously used for benchmarking machine learning algorithms and is publicly
available. We use it to evaluate the FL algorithms on the multi-modal and multi-
class segmentation task. For the client-side local training, we adapted the state-
of-the-art training pipeline originally designed for data-centralised training [7]
and implemented as a part of the NVIDIA Clara Train SDK3.

3
https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk/
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To test the generalisation ability across the subjects, we randomly split the
dataset into a model training set (N = 242 subjects) and a held-out test set
(N = 43 subjects). The scans were collected from thirteen institutions with
different equipment and imaging protocols, and thus heterogeneous image feature
distributions. To make our federated setup realistic, we further stratified the
training set into thirteen disjoint subsets, according to where the image data
were originated and assigned each to a federated client. The setup is challenging
for FL algorithms, because (1) each client only processes data from a single
institution, which potentially suffers from more severe domain-shift and over-
fitting issues compared with a data-centralised training; (2) it reflects the highly
imbalanced nature of the dataset (shown in Fig. 1).

Federated model setup The evaluation of the FL procedures is perpendic-
ular to the choice of convolutional network architectures. Without loss of gen-
erality, we chose the segmentation backbone of [7] as the underlying federated
model and used the same set of local training hyperparameters for all experi-
ments: the input image window size of the network was 224× 224× 128 voxels,
and spatial dropout ratio of the first convolutional layer was 0.2. Similarly to [7],
we minimised a soft Dice loss using Adam [4] with a learning rate of 10−4, batch
size of 1, β1 of 0.9, β2 of 0.999, and `2 weight decay coefficient of 10−5. For all
federated training, we set the number of federated rounds to 300 with two local
epochs per federated round. A local epoch is defined as every client “sees” its
local training examples exactly once. At the beginning of each epoch, data were
shuffled locally for each client. For a comparison of model convergences, we also
train a data-centralised baseline for 600 epochs.

In terms of computational costs, the segmentation model has about 1.2×106

parameters; a training iteration with an NVIDIA Tesla V100 GPU took 0.85 s.
Evaluation metrics We measure the segmentation performance of the mod-

els on the held-out test set using mean-class Dice score averaged over the three
types of tumour regions and all testing subjects. For the FL systems, we report
the performance of the global model shared among the federated clients.

Privacy-preserving setup The selective parameter updates module has
two system parameters: fraction of the model q and the gradient clipping value
γ. We report model performance by varying both. For differential privacy, we
fixed γ to 10−4, the sensitivity s to 2γ, and ε2 to (2qs)

2
3 ε1 according to [5]. The

model performance by varying q, ε1, and ε3 are reported in the next section.

4 Results

Federated vs. data-centralised training The FL systems are compared with
the data-centralised training in Fig. 2 (left). The proposed FL procedure can
achieve a comparable segmentation performance without sharing clients’ data.
In terms of training time, the data-centralised model converged at about 300
training epochs, FL training at about 600. In our experiments, an epoch of
data-centralised training (N = 242) with an NVIDIA Tesla V100 GPU takes
0.85s × 242 = 205.70s per epoch. The FL training time was determined by the



Privacy-preserving Federated Brain Tumour Segmentation 7

●

●

●

●

●
●

●
●

●
●

●

● ● ●
●

● ●
●

●

●

●
●

●
●

●

● ● ●

●

●

● ● ● ●
● ●

● ● ●
● ●

● ●
● ● ● ● ● ● ●

●
● ● ● ●

● ● ● ●

0.5

0.6

0.7

0.8

0 200 400 600

Number of epochs

A
ve

ra
ge

d 
m

ea
n−

cl
as

s 
D

ic
e

● Data−centralised training
FL: baseline m.
FL: m. aggregation
FL: m. restart
FL: m. restart + weighted ave.

●

●

●

●

●

●

●

●

● ●
● ●

● ● ●
●

● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.5

0.6

0.7

0.8

0 200 400 600

Number of epochs

A
ve

ra
ge

d 
m

ea
n−

cl
as

s 
D

ic
e

● 10% model, gamma 1e−4
10% model, gamma 5e−5
10% model, no clipping
40% model, gamma 1e−4
40% model, gamma 5e−5
40% model, no clipping
FL: m. restart + weighted ave.

Fig. 2: Comparison of segmentation performance on the test set with (left): FL
vs. non-FL training, and (right): partial model sharing.

slowest client (N = 77), which takes 0.85s × 77 = 65.45s plus small overheads
for client-server communication.

Momentum restarting and weighted averaging Fig. 2 (left) also com-
pares variants of the FL procedure. For the treatment of momentum variables,
restarting them at each federated round outperforms all the other variants. This
suggests (1) each client maintaining an independent set of momentum variables
slows down the convergence of the federated model; (2) averaging the momen-
tum variables across clients improved the convergence speed over baseline m.,
but still gave a worse global model than the data-centralised model. On the
server-side, weighted averaging of the model parameters outperforms the simple

model averaging (i.e. W (t+1) ←
∑

kW
(t+1)
k /K). This suggests that the weighted

version can handle imbalanced numbers of iterations across the clients.
Partial model sharing Fig. 2 (right) compares partial model sharing by

varying the fraction of the model to share and the gradient clipping values.
The figure suggests that sharing larger proportions of models can achieve better
performance. Partial model sharing does not affect the model convergence speed
and the performance decrease can be almost negligible when only 40% of the
full model is shared among the clients. Clipping of the gradient can, sometimes,
improve the model performance. However, the value needs to be carefully tuned.

Differential privacy module The model performances by varying differ-
ential privacy (DP) parameters are shown in Fig. 3. As expected, there is a
trade-off between DP protection and model performance. Sharing 10% model
showed better performance than sharing 40% under the same DP setup. This is
due to the fact that the overall privacy costs ε are jointly defined by the amount
of noise added and the number of parameters shared during training. By fixing
the per-parameter DP costs, sharing fewer variables has less overall DP costs
and thus better model performance.

5 Conclusion

We propose a federated learning system for brain tumour segmentation. We
studied various practical aspects of the federated model sharing with an emphasis
on preserving patient data privacy. While a strong differential privacy guarantee
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Fig. 3: Comparison of segmentation models (ave. mean-class Dice score) by vary-
ing the privacy parameters: percentage of partial models, ε1, and ε3.

is provided, the privacy cost allocation is conservative. In the future, we will
explore differentially private SGD (e.g. [1]) for medical image analysis tasks.
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