Skip to main content

Residual Attention Generative Adversarial Networks for Nuclei Detection on Routine Colon Cancer Histology Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11861))

Abstract

The automatic detection of nuclei in pathological images plays an important role in diagnosis and prognosis of cancers. Most nuclei detection algorithms are based on the assumption that the nuclei center should have larger responses than their surroundings in the probability map of the pathological image, which in turn transforms the detection or localization problem into finding the local maxima on the probability map. However, all the existing studies used regression algorithms to determine the probability map, which neglect to take the spatial contiguity within the probability map into consideration. In order to capture the higher-order consistency within the generated probability map, we propose an approach called Residual Attention Generative Adversarial Network (i.e., RAGAN) for nuclei detection. Specifically, the objective function of the RAGAN model combines a detection term with an adversarial term. The adversarial term adopts a generator called Residual Attention U-Net (i.e., RAU-Net) to produce the probability maps that cannot be distinguished by the ground-truth. Based on the adversarial model, we can simultaneously estimate the probabilities of many pixels with high-order consistency, by which we can derive a more accurate probability map. We evaluate our method on a public colorectal adenocarcinoma images dataset with 29756 nuclei. Experimental results show that our method can achieve the F1 Score of 0.847 (with a Precision of 0.859 and a Recall of 0.836) for nuclei detection, which is superior to the conventional methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  2. Fei, W., Jiang, M.: Residual attention network for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6458 (2017)

    Google Scholar 

  3. He, K., Zhang, X.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2015)

    Google Scholar 

  4. Kuse, M., Kalasannavar, V.: Local isotropic phase symmetry measure for detection of beta cells and lymphocytes. J. Pathol. Inform. 2(2), S2 (2011)

    Article  Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  6. Sirinukunwattana, K., Raza, S.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)

    Article  Google Scholar 

  7. Vink, J., Leeuwen, V.: Efficient nucleus detector in histopathology images. J. Microsc. 249, 124–135 (2013)

    Article  Google Scholar 

  8. Walther, D., Itti, L., Riesenhuber, M., Poggio, T., Koch, C.: Attentional selection for object recognition—a gentle way. In: Bülthoff, H.H., Wallraven, C., Lee, S.-W., Poggio, T.A. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 472–479. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36181-2_47

    Chapter  Google Scholar 

  9. Xie, Y., Xing, F., Kong, X., Su, H., Yang, L.: Beyond classification: structured regression for robust cell detection using convolutional neural network. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 358–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_43

    Chapter  Google Scholar 

  10. Xu, J., Xiang, L.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2016)

    Article  MathSciNet  Google Scholar 

  11. Yuan, Y., Failmezger, H.: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 4(157), 157ra143 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 61876082, 61861130366, 61703301) and the Royal Society-Academy of Medical Sciences Newton Advanced Fellowship (No. NAF\(\backslash \)R1\(\backslash \)180371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoqiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Shao, W., Li, Z., Li, W., Zhang, D. (2019). Residual Attention Generative Adversarial Networks for Nuclei Detection on Routine Colon Cancer Histology Images. In: Suk, HI., Liu, M., Yan, P., Lian, C. (eds) Machine Learning in Medical Imaging. MLMI 2019. Lecture Notes in Computer Science(), vol 11861. Springer, Cham. https://doi.org/10.1007/978-3-030-32692-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32692-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32691-3

  • Online ISBN: 978-3-030-32692-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics