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Abstract. Manual segmentation of rodent brain lesions from magnetic
resonance images (MRIs) is an arduous, time-consuming and subjective
task that is highly important in pre-clinical research. Several automatic
methods have been developed for different human brain MRI segmen-
tation, but little research has targeted automatic rodent lesion segmen-
tation. The existing tools for performing automatic lesion segmentation
in rodents are constrained by strict assumptions about the data. Deep
learning has been successfully used for medical image segmentation. How-
ever, there has not been any deep learning approach specifically designed
for tackling rodent brain lesion segmentation. In this work, we propose
a novel Fully Convolutional Network (FCN), RatLesNet, for the afore-
mentioned task. Our dataset consists of 131 T2-weighted rat brain scans
from 4 different studies in which ischemic stroke was induced by transient
middle cerebral artery occlusion. We compare our method with two other
3D FCNs originally developed for anatomical segmentation (VoxResNet
and 3D-U-Net) with 5-fold cross-validation on a single study and a gener-
alization test, where the training was done on a single study and testing
on three remaining studies. The labels generated by our method were
quantitatively and qualitatively better than the predictions of the com-
pared methods. The average Dice coefficient achieved in the 5-fold cross-
validation experiment with the proposed approach was 0.88, between
3.7% and 38% higher than the compared architectures. The presented
architecture also outperformed the other FCNs at generalizing on differ-
ent studies, achieving the average Dice coefficient of 0.79.

Keywords: Lesion segmentation · Deep learning · Rat brain · Magnetic
resonance imaging

1 Introduction

Medical image segmentation constitutes a bottleneck in research due to the time
required to delineate regions of interest (ROI). In particular, pre-clinical studies
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involving animals can potentially produce 3D images in the order of hundreds,
i.e., several animals with varied characteristics such as age, gender and strain at
different time-points may be needed for a certain study.

Rodent brain lesion segmentation is a challenging problem subject to inter-
and intra-operator variability. There are multiple factors that influence segmen-
tation quality such as the characteristics of the lesion, the scan parameters and
the annotators’ knowledge and experience. Despite that, manual segmentation
remains the de facto gold standard, decreasing the reproducibility of research.

Convolutional neural networks (CNNs) and, in particular, U-Net-like archi-
tectures [16] have recently become a popular choice for anatomical segmentation.
There are numerous methods specifically designed for human brains to parcel-
late anatomical structures [3,17], tumors [8] and lesions [14]. On contrary, animal
brain segmentation algorithms based on CNNs are still infrequent [6]. As one
example, Roy et al. showed that the same CNN can be used for extraction of
human and mouse brains (i.e., skull-stripping) [18].

Recently, few automatic approaches were developed to tackle rodent brain le-
sion segmentation, including statistical models [2], thresholding [4] and level-sets
[13]. However, these methods rely on strict assumptions such as the distribution
of the data, or they are limited to use a single image modality. To the best of
the authors’ knowledge, CNNs have not yet been proposed for segmenting rat
brain lesions.

In this work, we present RatLesNet, a 3D Fully Convolutional Network (FCN)
to automatically segment rat brain lesions. Our dataset consists of a total of
131 Magnetic Resonance (MR) T2-weighted rat brain scans from 4 different
studies with their corresponding lesion segmentation. Brain scans were acquired
at different time-points after the lesions were caused by ischemic stroke induced
by an occlusion of transient middle cerebral artery. Unlike other studies in which
the segmentation algorithms rely on additional steps [2,4,13], RatLesNet uses
unprocessed MR-images that are not skull-stripped nor corrected for bias-field
inhomogeneity. As well, we do not post-process the final predictions by filling
holes or discarding small isolated clusters of voxels.

We compare RatLesNet with two other 3D FCNs performing internal five-
fold cross-validation in one study of the dataset, and by training on volumes from
that study to assess their generalization capability on the remaining 3 studies.

2 Materials and methods

Material: The dataset consists of 131 MR brain scans of different adult male
Wistar rats weighting between 250-300 gr. The data, provided by Charles River
Laboratories4, are derived from four different studies: 03AUG2015 (21 scans),
03MAY2016 (45 scans), 02NOV2016 (48 scans) and 02OCT2017 (17 scans).
Transient (120 min) focal cerebral ischemia was produced by middle cerebral
artery occlusion (tMCAO) in the right hemisphere of the brain [12]. MR data

4 https://www.criver.com/
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Fig. 1. Representative lesion progression of a rat at 2h, 24h and 35 days after MCA
occlusion. The arrows point to the lesion, which appear hyperintense in T2-weighted
images on the right hemisphere.

acquisitions were performed at different time-points in a horizontal 7T magnet,
more specifically at 2 hours (12 animals from 02NOV2016 study), 24 hours (12
animals from 02NOV2016 and all animals from 03MAY2016 and 02OCT2017)
and 35 days (all animals from 03AUG2015 except 1) after the occlusion. 02NOV2016
and 03AUG2015 studies included 24 and 1 sham animals, respectively, that un-
derwent through identical procedures, including anesthesia regime, but without
the actual tMCAO occlusion. All animal experiments are carried out accord-
ing to the National Institute of Health (NIH) guidelines for the care and use of
laboratory animals, and approved by the National Animal Experiment Board,
Finland. Multi-slice multi-echo sequence was used with the following parameters;
TR = 2.5 s, 12 echo times (10-120 ms in 10 ms steps) and 4 averages. Eighteen
(18) coronal slices of thickness 1 mm were acquired using a field-of-view of 30x30
mm2 producing 256x256 imaging matrices.

The T2-weighted MR images and their corresponding lesion segmentation
were provided in form of NIfTI files. We chose a single study (02NOV2016) and
performed an independent lesion segmentation to approximate inter-rate vari-
ability. The Dice coefficient [7] between our independent manual segmentation
and the one provided was 0.73.

Network architecture: RatLesNet’s architecture (Figure 2) is composed by
three types of blocks: 1) Dense blocks, 2) 3D convolutions with filter size of 1
followed by an activation function and 3) Max-pooling/Unpooling operations.
Dense blocks encapsulate two 3D convolutions with filter size of 3 and ReLU
activation functions concatenated with the outputs of the previous layers within
the same block in a ResNet [9] fashion. The number of channels increasing within
the block (i.e. growth rate) is 18 and, unlike the original Dense blocks [10], these
do not include a transition layer at the end. Due to the consequent widening
of layers along the network, the external 3D convolutional layers with filter size
of 1 are of special importance for adjusting the number of channels, similarly
to traditional bottleneck layers. Max-pooling and unpooling layers are used to
reduce and recover the spatial dimensions of the volumes, respectively. Max-
pooling has a window size and stride of 2, and unpooling reuses the indices of
the values from the max-pooling operation to place the new values back to their
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original location [15]. Finally, the input and output volumes of the network have
identical spatial dimensions, and their number of channels correspond to the
number of medical imaging modalities (here 1 that is T2) and the number of
classes (here 2: lesion and non-lesion), respectively.

Fig. 2. Overview of the network architecture.

Training: The network was trained on entire T2-weighted images with a reso-
lution of 256x256x18 voxels and a mini-batch size of 1. Image intensities in each
volume were standardized by subtracting their mean and dividing them by their
standard deviation. Cross-entropy loss function was minimized using Adam [11]
with a starting learning rate of 10−5. Training lasted for a maximum of 1000
epochs or until the validation loss increased 5 consecutive times.

3 Experiments and Results

Cross-validation. Five-fold cross-validation was performed on the scans of the
study that was segmented independently (02NOV2016) to assess the perfor-
mance of the proposed RatLesNet method. Additionally, RatLesNet was com-
pared to 3D U-Net [5] and VoxResNet [3], two 3D fully convolutional networks
originally designed for anatomical segmentation. Both architectures were imple-
mented according to the original design resulting in 19M parameters (3D U-Net)
and 1.5M parameters (VoxResNet). In contrast, our RatLesNet implementation
has only 0.37M parameters, reducing the possibility of overfitting. The models
that provided the reported results were trained with the best performing learning
rate found.
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Table 1. Average 5-fold cross-validation Dice scores and standard deviation from
02NOV2016 dataset with and without sham animals (no brain lesion). The column
Inter-operator refers to differences between the two independent manual segmentations
by different operators.

Time-point Shams 3D U-Net VoxResNet RatLesNet Inter-operator

2h
Yes 0.57± 0.42 0.80± 0.23 0.84± 0.19 0.84± 0.19
No 0.17± 0.13 0.60± 0.16 0.67± 0.12 0.67± 0.12

24h
Yes 0.7± 0.35 0.89± 0.18 0.92± 0.11 0.90± 0.12
No 0.43± 0.13 0.79± 0.2 0.85± 0.11 0.79± 0.08

Average
Yes 0.64± 0.39 0.85± 0.21 0.88± 0.16 0.87± 0.16
No 0.30± 0.26 0.70± 0.20 0.76± 0.14 0.73± 0.12

Our RatLesNet provided better quantitative and qualitative results than 3D
U-Net [5] and VoxResNet [3]. Table 1 compares the mean Dice coefficients and
their variability across the implemented networks. As brain lesion’s appearance
varies depending on the time passed since the lesion was caused (see Figure 1),
Dice coefficients were averaged separately. Furthermore, due to the incorpora-
tion of sham animals (rats without lesion), two averages are provided: one that
includes all animals and one that excludes rats without lesion. The methods
recognized well the brains with no lesions and therefore the average Dice coef-
ficients and their standard deviations were higher when shams were included.
Due to the pronounced class imbalance, the network tends to classify voxels
as non-lesion. On average, the number of lesion voxels in our independent seg-
mentation in 2h and 24h time-points were 6060 (0.51% of all voxels) and 21333
(1.81% of all voxels), respectively. Additionally, 2h scans are more troublesome
to segment because the lesion is considerably smaller and some affected areas
resemble healthy tissue.

The segmentations generated with RatLesNet have higher Dice coefficients
than inter-operator variability. Furthermore, predictions did not only achieve
greater Dice coefficients than the other 3D networks, but also the quality of the
final segmentations was noticeably better in visual inspection: Figure 3 depicts
the predicted lesion in the same slice of the brain generated by the three different
architectures, together with the original MR image and its ground truth. 3D
U-Net’s segmentation shows that the architecture did not learn to generalize
properly since it classifies large areas of unequivocal healthy tissue as lesion.
The borders of VoxResNet’s prediction were comparatively crispier than the
borders of the segmentation produced by our architecture. RatLesNet generated
consistent boundaries such as the gap between the two affected areas at the
bottom of the slice and the exclusion of the vein in the left side of the cortical
region. The consistency in the boundaries also increased the size of holes within
the segmented lesion and the size of clustered lesion voxels outside the affected
area.

Generalization capability. 3D U-Net, VoxResNet and the proposed archi-
tecture were trained on the scans from 02NOV2016 study (including sham ani-
mals) and tested on the scans from the remaining 3 studies to compare their gen-
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Fig. 3. Top: A slice of a T2-weighted rat brain image with lesion and its segmentation.
Bottom: segmentations generated by 3D U-Net, VoxResNet and our architecture in the
cross-validation test.

eralization capabilities. Table 2 summarizes the results. Our approach produced
markedly larger Dice coefficients than VoxResNet and 3D U-Net in 03MAY2016
and 02OCT2017 studies. On the other hand, VoxResNet architecture produced
the largest Dice coefficients in 03AUG2015 study. With 03MAY2016 and 02OCT2017
studies, the Dice coefficients of our network were markedly larger than the Dice
coefficient between two independent manual segmentations (0.73) of 02NOV2016
study.

Table 2. Average Dice scores and standard deviation. The model was trained on the
02NOV2016 study.

Study 3D U-Net VoxResNet RatLesNet

03AUG2015 (D35) 0.64± 0.27 0.71± 0.23 0.68± 0.26
03MAY2016 (24h) 0.62± 0.18 0.77± 0.12 0.82± 0.05
02OCT2017 (24h) 0.60± 0.18 0.78± 0.07 0.84± 0.04

Average 0.62± 0.21 0.76± 0.15 0.79± 0.15

Computation time: The network was implemented in Tensorflow [1] and it was
run on a Ubuntu 16.04 with an Intel Xeon W-2125 CPU @ 4.00GHz processor,
64 GB of memory and an NVidia GeForce GTX 1080 Ti with 11 GB of memory.
Training lasted for approximately 6 hours and inference time was about half a
second per scan.
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4 Conclusion

We have presented RatLesNet, the first FCN specifically designed for rat brain
lesion segmentation. Our approach does not rely on corrections on the MR images
or post-processing operations, and utilizes the entire 3D volume to explicitly use
spatial information in three dimensions. In addition, the architecture of our
RatLesNet is agnostic to the number of modalities and MR sequences presented
in the input channels, so its generalization to multimodal data is technically
straightforward. Five-fold cross-validation showed that our approach is more
accurate than two other 3D FCNs designed for anatomical segmentation, and the
boundaries consistency of the predicted segmentations is higher. Furthermore,
the generalization capabilities of the architectures was assessed with data from
three additional studies, and our approach provided with markedly larger Dice
coefficients in two of the three studies. Its performance on the third study was
slightly worse than the performance of VoxResNet.

Future work will expand the dataset increasing the variability of the lesion’s
appearance by including brain scans at different time-points after the lesion is
caused. Additional study is also needed to understand if the underperformance
of the other two networks is caused by the comparatively large number of pa-
rameters as they are more prone to overfit the data.
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