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Abstract. We aim to detect pancreatic ductal adenocarcinoma (PDAC)
in abdominal CT scans, which sheds light on early diagnosis of pancreatic
cancer. This is a 3D volume classification task with little training data.
We propose a two-stage framework, which first segments the pancreas
into a binary mask, then compresses the mask into a shape vector and
performs abnormality classification. Shape representation and classifica-
tion are performed in a joint manner, both to exploit the knowledge that
PDAC often changes the shape of the pancreas and to prevent over-
fitting. Experiments are performed on 300 normal scans and 136 PDAC
cases. We achieve a specificity of 90.2% (false alarm occurs on less than
1/10 normal cases) at a sensitivity of 80.2% (less than 1/5 PDAC cases
are not detected), which show promise for clinical applications.

1 Introduction

Pancreatic cancer is a major killer causing hundreds of thousands of deaths
globally every year. It often starts with a small set of localized cells multiplying
themselves out of control and invading other parts of the body. The five-year
survival rate of the patient can reach 20% [6] if the cancer is detected at an
early stage, but quickly drops to 5% if it is discovered late and the cancerous
cells have spread to other organs [10]. Therefore, early diagnosis of pancreatic
cancer can mean the difference between life and death for the patients.

This paper deals with PDAC, the major type of pancreatic cancer accounting
for about 85% of the cases [10], and attempts to detect it by checking abdominal
CT scans. The pancreas, even in a healthy state, is difficult to segment from
a CT volume [9], partly because its 3D shape is irregular [12]. The segmen-
tation, particularly for the cancer lesion area, becomes even more challenging
when the pancreas is abnormal, e.g., cystic [13]. In recent years, with the de-
velopment of deep learning frameworks [3], researchers were able to construct
effective deep encoder-decoder networks [4] for organ segmentation [8] or shape
representation [1], boosting the accuracy of conventional models for a wide range
of medical imaging analysis tasks.

The goal of this paper is to discriminate abnormal pancreases from normal
ones3. This is a classification task, but directly training a volumetric classifier

3 Throughout this paper, an abnormal pancreas is defined as one suffering from PDAC.

ar
X

iv
:1

80
4.

10
68

4v
2 

 [
cs

.C
V

] 
 2

1 
A

ug
 2

01
9



2 F. Liu et al.

may suffer from over-fitting due to limited training data. Inspired by the fact
that PDAC often changes the pancreas shape, we set shape representation as
an intermediate goal, so as to constrain the learning space and regularize the
model. Our framework contains two stages. First, we train an encoder-decoder
network [11] for voxel-wise pancreas segmentation from CT scans4. Second, we
use a joint shape representation and classification network to predicts if the
patient suffers from PDAC. The weights of the shape representation module
are initialized using an auto-encoder [1][2], and then jointly optimized with the
classifier. Joint optimization improves classification accuracy at the testing stage.

The radiologists in our team collected and annotated a dataset with 436 CT
scans, including 300 normal cases and 136 PDAC cases. Our approach achieves a
sensitivity of 80.2% at a specificity of 90.2%, i.e., finding 4/5 of abnormal cases
with false alarms on only 1/10 of the normal cases. Some detected PDAC cases
contain tiny tumors, which are easily missed by segmentation algorithms and
even some professional radiologists. According to the radiologists, our approach
can provide auxiliary cues for clinical purposes.

2 Detecting PDAC in Abdominal CT Scans

2.1 The Overall Framework

A CT-scanned image, X, is aW×H×Lmatrix, whereW ,H andD are the width,
height and length of the cube, respectively. Each element in the cube indicates
the Hounsfield unit (HU) at the specified position. Each volume is annotated
with a binary pancreas mask S? which shares the same dimensionality with X.
Our goal is to design a discriminative function p(X) ∈ {0, 1}, with 1 indicating
that this person suffers PDAC and 0 otherwise.

Our idea is to decompose the function into two stages. The first stage is a
segmentation model f(·) for voxel-wise pancreas segmentation, i.e., where S =
f(X). The second stage is a mask classifier c(·) which assigns a binary label
to the mask S. To make use of shape information, c(·) is further decomposed
into a shape encoder g(·) which produces a compact vector v = g(S) to depict
the shape properties of the binary mask S, and a shape classifier h(·) which
determines if the shape vector v corresponds to a pancreas suffering from PDAC.

Therefore, the overall framework, shown in Figure 1, can be written as:

p(X) = c ◦ f(X) = h ◦ g ◦ f(X). (1)

We can of course design an alternative function, e.g., a 3D classifier which works
on CT image data directly, but our stage-wise model makes use of the prior
knowledge from the radiologists, i.e., PDAC often changes the shape of the
pancreas. This sets up an intermediate goal of optimization and shrinks the
search space of our model, which is especially helpful in preventing over-fitting
given limited training data. In addition, this also enables us to interpret our

4 To make our approach generalized, we do not assume the tumors are annotated in
the training set, and so we do not perform tumor segmentation.
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Fig. 1. The overall framework of our approach (best viewed in color).

prediction. We will show in experiments that, without such prior knowledge, the
classifier produces unstable results and less satisfying prediction accuracy.

2.2 Pancreas Segmentation by Encoder-Decoder Networks

Our approach starts with an encoder-decoder network for pancreas segmenta-
tion. There are typically two choices, which differ from each other in the way of
processing volumetric data. The first one applies 2D segmentation networks [8][9]
from orthogonal planes, while the other one trains a 3D network directly [5] in
a patch-based manner. Either method requires cutting volumetric data into 2D
slices or 3D patches at both training and testing stages. As a result, the seg-
mentation function S = f(X) cannot be optimized together with the subsequent
modules, namely shape representation and classification.

In practice, we apply a recent 2D segmentation approach named RSTN (Re-
current Saliency Transformation Network) [11] for pancreas segmentation. It
trains three models from the coronal, sagittal and axial planes, respectively. In
our own dataset, RSTN works very well, providing an average DSC (Dice Simi-
larity Coefficient) of over 87% for normal pancreas segmentation, and over 70%
for abnormal pancreas segmentation. We make two comments here. First, the
segmentation accuracy of 87% almost reaches the agreement between two in-
dividual annotations by different radiologists. Second, the abnormal pancreases
are often more difficult to segment, as their appearance and geometry proper-
ties can be changed by PDAC. However, as shown later, such imperfections in
segmentation only cause little accuracy drop in abnormality classification.

2.3 Joint Shape Representation and Classification

Based on pancreas segmentation S = f(X), it remains to determine the abnor-
mality of this pancreas. We achieve this by first compressing the segmentation
mask into a low-dimensional vector v = g(S) to compress v, and then applying
a classifier h(·) on top of v.
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Fig. 2. Shape representation and classification network (best viewed in color). Each
rectangle is a layer, with the number at the upper-right corner indicating the number
of channels. Each convolution (conv) layer contains a set of 3 × 3 × 3 kernels, and
each down-sampling (down) layer uses 2× 2× 2 convolution with a stride of 2. Batch
normalization and ReLU activation are used after all these layers. The last layer in
shape representation (the green neurons) is the low-dimensional shape vector, followed
by a 2-layer fully-connected network for classification.

The shape representation network g(·) involves down-sampling the segmenta-
tion mask gradually. Following [1], this is implemented by a series of 3D convolu-
tional layers. The detailed network configuration is shown in Figure 2. Regarding
the dimensionality of the shape vectors (i.e., the number of output neurons), a
high-dimensional representation carries more information, but also risks over-
fitting under limited training data. We analyze this parameter in experiments.
Essentially, both segmentation and shape representation networks perform image
down-sampling. The former starts with the raw input image and thus requires
complicated and expensive computations. The latter, however, is much simpler,
with the network much shallower, which processes the entire volume at once.
This makes it possible to be optimized together with the classifier.

In the final step, we implement h(·) as a 2-layer fully-connected network. The
simplicity of h(·) aligns with our motivation, i.e., the vector v carries discrimi-
native shape information which is easy to classify. Being a differentiable module,
it can the optimized with the shape representation network in a joint manner
(details are elaborated below), which brings consistent accuracy gain.

The training process starts by sampling a segmentation mask S from training
data. We first perform slight rotation (0◦ or ±10◦ along three axes individually,
27 possibilities) as data augmentation, and rescale the region within the minimal
bounding box into 128×128×128. Note that direct optimization on h◦g(·) cannot
guarantee that g(·) learns shape information. In addition, direct optimization can
lead to over-fitting with limited training data, even after data augmentation (see
experiments). Hence, we use a two-step method for gradual optimization.

In the first step, we deal with g(·) by concatenating this module with a
decoder network g̃(·), which performs reverse operations (all convolutions are
replaced by deconvolutions) to restore the compressed vector into the original
image. This framework, named an auto-encoder [1][2], can be trained in a weakly-
supervised manner, i.e., given an input mask S, we can minimize the difference

between S and S̃ = g̃ ◦ g(S) by minimizing the loss function LS

(
S, S̃

)
. This

forces the compressed vector v to store sufficient information in order to restore
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S = g̃(·). Auto-encoder provides a reasonable initialization for g(·) in the next
step (joint optimization). We use a mini-batch size of 1 and train the auto-
encoder for 40,000 iterations with a fix learning rate of 10−6.

The second step optimizes g(·) and h(·) jointly. We use the cross-entropy
loss LC(y, p) = y ln p+ η · (1− y) ln(1− p) where y is the ground-truth and p =
h ◦ g(S) is the predicted confidence. η performs class-balancing to avoid model
bias. The mini-batch size is still set to be 1, and we perform a total of 40,000
iterations. We start with a learning rate of 0.0005, and divide it by 10 after 20,000
and 30,000 iterations. To maximally preserve stability, we freeze all weights of
g(·) in the first 5,000 iterations, so that the 2-layer network h(·), initialized as
scratch, is reasonably trained before being optimized together with g(·).

Last but not least, there is an alternative way of jointly optimizing g(·) and
h(·), i.e., applying a discriminative auto-encoder [7], which preserves the shape

restoration loss in the second step and optimizes LS

(
S, S̃

)
+ λ · LC(y, p). We

do not use this strategy because our ultimate goal is classification – shape rep-
resentation is an important cue, but we do not hope the constraints in shape
restoration harms classification accuracy. In experiments, we find that a discrim-
inative auto-encoder produces less stable classification accuracy.

3 Experiments

3.1 Dataset and Settings

To the best of our knowledge, there are no publicly available datasets for PDAC
diagnosis. We collect a dataset with the help of the radiologists in our team.
There are 300 normal CT scans and 136 biopsy-proven abnormal (PDAC) cases,
and all of them were scanned by the same machine. The pancreas annotation
was done by four expert in abdominal anatomy and each case was checked by a
experienced board certified Abdominal Radiologist. The spatial resolution of our
data is relatively high, i.e., the physical distance between the neighboring voxels
is 0.5mm in the long axis, and varies from 0.5mm to 1.0mm in the other two
axes. We do not use data scanned from other types of machines (e.g., the NIH
dataset [9]) to avoid dataset bias, i.e., the classifier works by simply checking
the spatial resolution or other meta-information of the scan.

We use 100 normal cases for training the RSTN [11] and auto-encoder [1] for
pancreas segmentation and shape representation, respectively. The remaining
200 normal and 136 abnormal scans are first segmented using the RSTN then
compressed by the auto-encoder. These examples are randomly split into 4 folds,
each of which has 50 normal and 34 abnormal cases. We perform cross-validation,
i.e., training a classifier on three folds and testing it on the remaining one. We
report the sensitivity and specificity of different models.

3.2 Quantitative Results

Results are summarized in Table 1. To compare with the joint training strategy,
we provide two other competitors, namely a support vector machine (SVM) and
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Dimension
SVM 2LN (I) 2LN (J)

Sens. Spec. Sens. Spec. Sens. Spec.

128 73.4± 3.1 87.8± 2.9 77.5± 2.2 87.6± 1.5 79.3± 1.0 89.9± 1.0

256 75.0± 1.9 87.6± 3.2 78.2± 1.6 89.1± 1.2 79.0± 0.4 90.5± 0.8

512 78.1± 1.9 89.5± 1.0 80.7± 1.5 88.3± 1.0 79.0± 0.8 90.9± 0.9

1,024 75.0± 0.0 89.0± 0.0 78.8± 0.7 90.5± 0.6 80.2± 0.5 90.2± 0.2

Table 1. The sensitivity (sens., %) and specificity (spec., %) reported by different ap-
proaches and dimensionalities of shape. We denote the models optimized individually
and jointly by (I) and (J), respecitively. All these numbers are the average over 5 indi-
vidual runs. 2LN (J) with 1,024-dimensional vectors has the best average performance.

the individually-optimized 2-layer network (equivalent to freezing the param-
eters in the auto-encoder throughout the entire training process). We observe
consistent accuracy gains brought by the proposed approach over both competi-
tors, in particular the 2-layer network optimized individually. This stresses the
importance and effectiveness of joint optimization. Regarding other options, we
find that the classification accuracy of our approach either drops or becomes
unstable if we (i) train the entire network from scratch; (ii) preserve the shape
restoration loss with classification loss; or (iii) do not freeze the weights of the
auto-encoder in the early training sections.

In clinics, an important issue to consider is the tradeoff between sensitivity
and specificity. A higher sensitivity implies that more abnormal cases are de-
tected, but also brings the price of a lower specificity. Our approach, by simply
tuning the classification threshold, can satisfy different requirements. The ROC
curves of different models are shown in Figure 3. Using our best model (1,024-
dimensional shape vector with joint optimization), we can achieve a sensitivity
of 95% at a specificity of 53.8%, or a specificity of 95% at a sensitivity of 67.9%.

3.3 Qualitative Analysis

We first investigate the relationship between pancreas segmentation quality and
classification accuracy. Trained on a standalone set of 100 normal cases, RSTN
reports average DSCs of 86.66% and 71.45% on the 200 testing normal and 136
abnormal cases, respectively. The radiologists randomly checked around 20 cases,
and verified that our segmentation results, especially on the normal pancreases,
have achieved the level of being used for diagnosis. We also use the ground-truth
segmentation masks of these 200 + 136 pancreases in classification. With 1,024-
dimensional shape vectors, the sensitivity and specificity of the SVM classifier
are improved by by 9.0% and 2.0%, and these numbers for the 2-layer network
are 5.6% and 0.6%, respectively. This indicates that the imperfection of abnor-
mal pancreas segmentation mainly causes drops in sensitivity. But, built on top
of automatic segmentation, our framework can be applied to a wide range of
scenarios where the manual annotation is not available.

Next, we consider the accuracy of shape representation, or more specifically,
the similarity between the restored segmentation mask and the original one. It is
obvious that a higher dimension in shape representation stores richer information
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Fig. 3. Left: classification results by our approach. Right: the ROC curves. Red and
blue contours mark the labeled pancreas and tumor, and blue regions indicate the
predicted pancreas. TP, TN, FP, FN: for {true,false}-{positive,negative}, respectively.

and thus produces more accurate restoration. However, as shown in Table 1, we
do not observe significant gain brought by high dimensionalities. This verifies our
assumption, i.e., the classifier does not require accurate shape reconstruction.
This also explains the advantage of joint optimization, in which the classifier
can capture discriminative information from shape representation, and the shape
model can also adjust itself to help classification.

We visualize several successful and failure examples in Figure 3. Our approach
is able to detect some cases with tiny tumors which are easily missed even by the
radiologists5. On the other hand, our approach is likely to fail when the pancreas
segmentation is less accurate, leading to a strange pancreas shape which is not
seen in training data and thus confuses the classifier. One false-negative and one
false-positive cases are shown in Figure 3.

Finally, we point out that there is an alternative to our approach, which di-
rectly trains segmentation/detection networks to find the tumors in these PDAC
cases. In comparison, our approach has two advantages. First, we do not require
the tumors to be annotated in the training data, which is an extremely challeng-
ing task. Second, our approach can detect some PDAC cases with very small
tumors (which largely changed the shape of the pancreas) that are missed by
segmentation. We train a tumor segmentation network individually, and find
that more than half of the false negative can be recovered by our approach.
This suggests that shape representation serves as an auxiliary cue. However, a
clear drawback of our approach is not being able to find the exact position of

5 The early diagnosis of PDAC is difficult and can be uncertain from CT scans. In our
case, the radiologists proved these PDAC cases with biopsy checks. They can easily
miss some of these cases if they were not told their abnormality beforehand.
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the lesion area. In all, our approach provides an important cue (shape), and it
can be integrated with other cues in the future towards more accurate diagno-
sis, e.g., when voxel-wise tumor annotations are available, we can incorporate
pancreas/tumor segmentation into our joint optimization framework.

4 Conclusions

Our approach is motivated by knowledge from surgical morphology, which claims
that the PDAC can be discovered by observing the shape change of the pancreas.
We first use an encoder-decoder network to obtain pancreas segmentation, and
design a joint framework for shape representation and classification. We initialize
shape representation using an auto-encoder, and optimize it with the classifier
in a joint manner.

In experiments, our approach achieved a sensitivity of 80.2% with a specificity
of 90.2%. It even detected several challenging cases which are easily missed by the
radiologists. Given a larger amount of training data, we can expect even higher
performance. Our future research directions also involve adding other cues (e.g.,
tumor segmentation) and training the entire framework in a joint manner.
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