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Abstract. In this paper we propose a novel deep learning-based algo-
rithm for biomedical image segmentation which uses a sequential atten-
tion mechanism able to shift the focus of attention across the image in a
selective way, allowing subareas which are more difficult to classify to be
processed at increased resolution. The spatial distribution of class infor-
mation in each subarea is learned using a retina-like representation where
resolution decreases with distance from the center of attention. The final
segmentation is achieved by averaging class predictions over overlapping
subareas, utilizing the power of ensemble learning to increase segmenta-
tion accuracy. Experimental results for semantic segmentation task for
which only a few training images are available show that a CNN using
the proposed method outperforms both a patch-based classification CNN
and a fully convolutional-based method.
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1 Introduction

Recently deep learning methods [2], which automatically extract hierarchical
features capturing complex nonlinear relationships in the data, have managed
to successfully replace most task-specific hand-crafted features. This has resulted
in a significant improvement in performance on a variety of biomedical image
analysis tasks, like object detection, recognition and segmentation (see e.g. [10]
for a recent survey of the field and representative methods used in different ap-
plications), and currently Convolutional Neural Network (CNN) based methods
define the state-of-the-art in this area.

In this paper we concentrate on biomedical image segmentation. For seg-
mentation, where each pixel needs to be classified into its corresponding class,
initially patch-wise training/classification was used [1]. In patch-based methods,
local patches of pre-determined size are extracted from the images, typically us-
ing a CNN as pixel-wise classifier. During training, the patch is used as an input
to the network and it is assigned as a label the class of the pixel at the center of
the patch (available from ground-truth data provided by a human expert). Dur-
ing the test phase, a patch is fed into the trained net and the output layer of the
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net provides the probabilities for each class. More recently, Fully Convolutional
Networks (FCN) [8], which replace the fully connected layers with convolutional
ones, have replaced the patch-wise approach by providing a more efficient way
to train CNNs end-to-end, pixels-to-pixels, and methods stemming from this ap-
proach presently define the state-of-the-art in biomedical image segmentation,
exemplified by conv-deconv-based methods like U-Net [7].

Although fully convolutional methods have shown state-of-the-art perfor-
mance on many segmentation tasks, they typically need to be trained on large
datasets to achieve good accuracy. In many biomedical image segmentation tasks,
however, only a few training images are available — either data simply being not
available, or providing pixel-level ground truth by experts being too costly to
obtain. Here we are motivated by a similar problem (section 3), where less than
50 images are available for training. On the other hand, patch-wise methods need
only local patches, a huge number of which can be extracted even from a small
number of training images. They however suffer from the following problem.
While fully convolutional methods learn a map from pixel areas (multiple in-
put image values) to pixel areas (multiple classes of all the pixels in the area),
patch-wise methods learn a map from pixel areas (input image values) to a single
pixel (class of the pixel in the center of the patch). As illustrated in Fig. [1f [i],
this wastes the rich information about the topology of the class structure inside
the patch for many of the samples which contain more than a single class, and
these would typically be the most interesting/difficult samples [4]. Instead of
trying to represent in a suitable way and learn the complex class topology, it
just substitutes it by a single class (the class of the pixel in the center of the
patch).

Regarding fully convolutional methods, they treat all locations in the images
in the same way, which is in contrast with how human visual perception works.
It is known that humans employ attentional mechanisms to focus selectively on
subareas of interest and construct a global scene-representation by combining
the information from different local subareas [6].

Based on the above observations, we propose a new method, which takes a
middle ground between fully convolutional and patch-wise learning and combines
the benefits of both of these strategies. As shown in Fig. [I| as in the patch-wise
approach we consider subareas of the whole image at a time, which provides
us with sufficient number of training samples, even if only a few ground-truth
labeled images are available. However, as illustrated in Fig. [1] [ii], the class in-
formation is organized as in the retina [3]: the spatial resolution is highest in
the central area (corresponding to the fovea), and it diminishes as we go to the
periphery of the subarea. We propose a sequential attention mechanism which
shifts the focus of attention in such a way that areas of the image which are
difficult to classify (i.e. the classification uncertainty is higher) are considered
in much more detail than areas which are easy to classify. Since the focus of
attention moves the subarea under investigation much slower over difficult areas
(i.e. with much smaller step), this results in many overlapping subareas in these
regions. The final segmentation is achieved by averaging the class predictions
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Fig. 1. [i] Local patch containing pixels belonging to 3 classes shown in different color.
On the right is normalized histogram showing the empirical distribution of the classes
inside the patch, which can be interpreted as probabilities. A standard patch-wise
method learns only the class of the pixel at the center, ignoring completely class topol-
ogy. [ii] The proposed method learns the structure of the spatial distribution of the
class topology in a local subarea represented similarly to the retina - the resolution is
highest in the center and decreases progressively in the periphery. As attention shifts
inside the image, the information of overlapping subareas is combined to produce the
final segmented image (details explained in the text). Figure best viewed in color.

over the overlapping subareas. In this way, the power of ensemble learning [5] is
utilized by incorporating information from all overlapping subareas in the neigh-
borhood (each of which provides slightly different views of the scene) to further
improve accuracy.

This is the basic idea of the method proposed in the paper, and details how to
implement it in a CNN will be given in the next section. Experimental results are
reported in section 3, indicating that a significant improvement in segmentation
accuracy can be achieved by the proposed method compared to both patch-based
and fully convolutional-based methods.

2 Method

We represent a subarea S extracted from an input image (centered at the current
focus of attention) as a tensor of size d x d x ¢, where d is the size of the subarea
in pixels and ¢ stands for the color channels if color images are used (as typically
done, and ¢ = 3 for RGB images). As shown in Fig. 1] [ii], we can represent the
class information corresponding to this subarea as grids of different resolution,
where each cell in a grid contains a sample histogram h(? calculated so that
the k-th element of A(*) gives the number of pixels from class k observed in the
i-th cell of the grid. If each histogram A" is normalized to sum to 1 by dividing
each bin by the total number of pixels covered by the cell, the corresponding
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vector p(*) can now be used to represent the probability mass function (pmf) for
cell i: the k-th element of p(, i.e. p,(ci), can be interpreted as the probability of
observing class k in the area covered by the i-th cell of the grid.

Next, we show how retina-like grids of different resolution levels can be cre-
ated. Let’s start with a grid of size 4 x 4, as shown in the top row of Fig. [1] [ii].
This we will call Resolution Level 1 and denote it as r = 1. At resolution level
1 all the cells in the grid have the same resolution, i.e. the pmfs corresponding
to each cell are calculated from areas of the same size. For example, if the size
of the local subarea under consideration is d = 128 pixels (i.e. image patch of
size 128 x 128 pixels), each cell in the grid at resolution level » = 1 would cor-
respond to an image area of size 32 x 32 pixels from which a probability mass
function p(¥ would be calculated, as explained above. Next, we can create a grid
at Resolution Level 2 (r = 2) by dividing in half the four cells in the center of
the grid, so that they form an inner 4 x 4 grid, whose resolution is double. We
can continue this process of dividing the innermost 4 cells into 2 to obtain still
higher resolution levels. It is easy to see that the number of cells N in a grid
obtained at resolution level r is N = 16+ 12(r —1). Of course, it is not necessary
the initial grid at » = 1 to be of size 4 x 4, but choosing this number makes the
process of creating different resolution levels especially simple, since in this case
the innermost cells are always 4 (2 x 2).

In our method, we train a CNN to learn the map between a local subarea
image given as input to the network, and the corresponding pmfs p(*) used as
target values. We use the cross-entropy between the pmfs of the targets p(*) and
the corresponding output unit activations y(? as loss function L:

L==3"%"> pilogy), (Susw), (1)
n 7 k

where n indexes the training subarea image patches (S,, being the n-th training
subarea image patch), ¢ indexing the cells in the corresponding resolution grid,
and k the classes. Here, w represents the weights of the network, to be found
by minimizing the loss function. To form probabilities, the network output units
corresponding to each cell are passed through the soft-max activation function.
Finally, we describe the sequential attention mechanism we utilize, whose
purpose is to move the focus of attention across the image in such a way that
those parts which are difficult to classify (i.e. classification uncertainty is high)
are observed at the highest possible resolution, and the retina-like grid of pmfs
moves with smaller steps across such areas. To evaluate the classification uncer-
tainty of the grid over the present subarea S, we use the following function,

1 i i
H(S) =~ > > vy logp;, (2)
i€S k

which represents the average entropy obtained from the posterior pmfs p(®) for
each cell (indexed by 4) inside the grid, and k indexes the classes. Using H(S) as
a measure of classification uncertainty, the position of the next location where
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Fig. 2. Overview of the sequential attention mechanism (see text for details).

to move the focus of attention (horizontal shift in pixels) is given by
FH(S)) = dexp{~(H(S))*/20%}. 3)

The whole process is illustrated in Fig. [2l We start at the upper left corner of
the input image, with a subarea of size d x d pixels (the yellow patch (a) in
the figure). The classification uncertainty for that subarea is calculated using
Eq.[2| and the step size in pixels to move in the horizontal direction is calculated
by Eq. 38l As illustrated in the graph in the center of Fig. [2| since in this case
the classification uncertainty is 0 (all pixels in the subarea belong to the same
class), the focus of attention moves d pixels to the right, i.e. in this extreme
case there is no overlap between the current and next subareas. For the subarea
(b) shown in green, the situation is very different. In this case the classification
uncertainty is very high, and the focus of attention would move only slightly
to the right, allowing the image around this area to be assessed at the highest
resolution. This would result in very high level of overlap between neighboring
subareas, as shown in the heat map on the right (where intensity is proportional
to the level of overlap). This process is repeated until the right corner of the
image is reached. Then the focus of attention is moved 10 pixels in the vertical
direction to scan the next row and everything is repeated until the whole image
is processed.

While the above attention mechanism moves the focus of attention across the
image, the posterior class pmfs from the grids corresponding to each subarea
are stored in a probability map of the same size as the image, i.e. to each pixel
in the image is allocated a pmf equal to the pmf of the cell from the grid
positioned above that pixel. In areas in the image where several subareas overlap,
the probability map is computed by averaging for each pixel the pmfs of all cells
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Table 1. Experimental results for different values d of the size of the local subareas

d | Method | Jaccard Index | Dice | TPR | TNR | Accuracy
patch-center| 0.811 = 0.039 [ 0.879 + 0.034 | 0.877 & 0.039 [ 0.922 £ 0.014 [ 0.932 + 0.016
ResLv-1 [ 0.798 + 0.046 | 0.868 & 0.040 | 0.866 £ 0.042 | 0.914 &+ 0.016 | 0.928 £ 0.015
ResLv-2 | 0.811 & 0.037 | 0.879 &£ 0.031 | 0.878 & 0.035 | 0.919 = 0.020 | 0.931 & 0.015
ResLv-3 | 0.819 & 0.034 | 0.884 + 0.029 | 0.883 & 0.035 | 0.923 £ 0.012 | 0.936 & 0.010
ResLv-4 | 0.820 + 0.033 | 0.884 + 0.029 | 0.881 + 0.036 | 0.926 + 0.013 | 0.936 + 0.012
UNet-patch| 0.788 £ 0.051 | 0.861 & 0.047 | 0.859 & 0.045 | 0.916 +£ 0.013 | 0.922 &+ 0.011
patch-center| 0.811 & 0.029 [ 0.878 £ 0.026 | 0.873 + 0.028 [ 0.917 & 0.012 | 0.931 + 0.012
ResLv-1 | 0.812 £ 0.038 | 0.878 £ 0.032 | 0.874 + 0.033 | 0.918 =+ 0.020 | 0.935 + 0.012
ResLv-2 | 0.815 £ 0.039 | 0.881 + 0.032 | 0.878 + 0.034 | 0.923 £ 0.015 | 0.934 + 0.014
128] ResLv-3 | 0.816 £ 0.030 | 0.88T + 0.029 | 0.879 + 0.033 | 0.920 + 0.011 | 0.935 + 0.008
ResLv-4 | 0.818 & 0.034 | 0.821 & 0.031 | 0.881 & 0.031 | 0.921 £ 0.017 | 0.936 = 0.011
ResLv-5 | 0.826 & 0.032 | 0.891 + 0.030 | 0.890 & 0.032 | 0.924 = 0.018 | 0.936 & 0.009
UNet-patch| 0.810 £ 0.035 | 0.879 £ 0.030 | 0.873 & 0.034 | 0.921 + 0.014 | 0.933 £ 0.012
patch-center| 0.778 & 0.029 [ 0.856 = 0.025 | 0.849 & 0.020 [ 0.899 £ 0.017 | 0.917 & 0.017
ResLv-1 | 0.810 & 0.037 | 0.876 + 0.030 | 0.872 & 0.031 | 0.914 = 0.021 | 0.933 £ 0.016
ResLv-2 | 0.817 £ 0.041 | 0.880 + 0.038 | 0.879 + 0.041 | 0.922 £ 0.017 | 0.936 & 0.011
192] ResLv-3 | 0.821 £ 0.032 | 0.885 + 0.030 | 0.883 £ 0.032 | 0.926 £ 0.010 | 0.935 + 0.011
ResLv-4 [0.832 + 0.036]0.894 & 0.030/0.890 £ 0.034]0.926 + 0.015|0.940 & 0.012
ResLv-5 | 0.825 & 0.032 | 0.887 &£ 0.030 | 0.883 & 0.032 | 0.925 £ 0.015 | 0.938 £ 0.012
UNet-patch| 0.809 & 0.036 | 0.878 = 0.029 | 0.870 & 0.034 | 0.920 £ 0.015 | 0.933 & 0.015
patch-center| 0.732 + 0.038 | 0.822 + 0.037 | 0.813 + 0.039 | 0.862 + 0.023 | 0.897 + 0.019
ResLv-1 | 0.804 & 0.039 | 0.871 & 0.035 | 0.866 & 0.036 | 0.910 = 0.018 | 0.931 & 0.012
ResLv-2 | 0.810 & 0.038 | 0.877 + 0.037 | 0.870 & 0.040 | 0.918 = 0.018 | 0.932 & 0.012
256] ResLv-3 | 0.819 + 0.029 | 0.882 £ 0.028 | 0.879 + 0.034 | 0.922 £ 0.016 | 0.937 &+ 0.010
ResLv-4 | 0.814 £ 0.033 | 0.877 + 0.030 | 0.871 + 0.031 | 0.917 + 0.020 | 0.936 & 0.011
ResLv-5 | 0.815 + 0.038 | 0.880 + 0.034 | 0.876 + 0.035 | 0.919 + 0.016 | 0.934 + 0.012
UNet-patch| 0.811 & 0.034 | 0.879 = 0.028 | 0.874 & 0.030 | 0.921 = 0.014 | 0.933 & 0.012
UNet-image| 0.806 + 0.033 [ 0.877 + 0.029 | 0.874 £ 0.031 | 0.919 + 0.013 [ 0.928 £ 0.008

96

which partially overlap over that pixel. Finally, the class of the pixel is obtained
by taking the class with highest probability from the final probability map, as
shown in the upper right corner of Fig. 2| for the final segmented image.

3 Experiments

In this section we evaluate the proposed method in comparison with a standard
patch-wise classification-based CNN [1] and the fully convolutional-based U-Net
[7] on the dataset described below. Additionally we implemented a U-Net ver-
sion, called UNet-patch, which applies U-Net to local patches rather than to a
whole image. The original U-Net method which takes as input the whole image
we will call UNet-image.

Dataset: Our dataset consists of 59 images showing colonies of undifferentiated
and differentiated iPS cells obtained through phase-contrast microscopy. Induced
pluripotent stem (iPS) cells [9], for whose discovery S. Yamanaka received the
Nobel prize in Physiology and Medicine in 2012, contain great promise for regen-
erative medicine. Still, in order to fulfill their promise a steady supply of iPS cells
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Fig. 3. Segmentation results for several images from the iPS dataset, obtained by the
proposed method (3rd column), using ResLv-4 with subarea size of d = 192. First
column shows the original images and second column the ground truth segmentation
provided by an expert (red corresponds to class Good, green to Bad and blue to Back-
ground). The last column shows the corresponding heat map, where areas in which
there was high overlap over neighboring subareas are shown with high intensity values.

obtained through harvesting of individual cell colonies is needed and automating
the detection of abnormalities arising during the cultivation process is crucial.
Thus, our task is to segment the input images into three categories: Good (undif-
ferentiated), Bad (differentiated) and Background (BGD, the culture medium).
Several representative images together with ground-truth provided by experts
can be seen in Fig. 3] All images in this dataset are of size 1600 x 1200 pixels.
Several images contained a few locations where even the experts were not sure
what the corresponding class was. Such ambiguous regions are shown in pink
and these areas were not used during training and not evaluated during test.

Network Architecture and Hyperparameters: We used a network archi-
tecture based on the VGG-16 CNN net, apart from the following differences.
There are 13 convolutional layers in VGG-16, while we used 10 here. Also, in
VGG-16 there are 3 fully-convolutional layers of which the first two consist of
4096 units, while those had 1024 units in our implementation. The learning rate
was set to 0.0001 and for the optimization procedure we used ADAM. Batch
size was 16, training for 20 epochs (U-Net-patch for 15 epochs and U-Net-image
for 200 epochs). For the implementation of the CNNs we used TensorFlow and
Keras. Four different sizes for the local subareas were tried: d = 96, 128,192, 256
and resolution level was changed between r = 1 to r = 5. The width of the
Gaussian in Eq. 3| was empirically set to o = 0.4 for all experimental results.
Evaluation procedure and criteria: The quality of the obtained segmen-
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tation results for each method were evaluated by 5-fold cross-validation using
the following criteria: Jaccard index (the most challenging one), Dice coefficient,
True Positive Rate (TPR), True Negative Rate (TNR) and Accuracy. For each
score the average and standard deviation are reported.

Results: The results obtained on the iPS cell colonies dataset for each of the
methods are given in Table[I} where, patch-center stands for the patch-wise clas-
sification method, and results for resolution levels from r = 1 to r = 5 are given
for the proposed method. As can be seen from the results, the proposed method
outperforms both patch-wise classification and the U-Net-based methods. Fig.
gives some examples of segmentation on images from the iPS dataset, show-
ing that very good accuracy of segmentation can be achieved by the proposed
method. The heat maps given in the last column demonstrate that the proposed
attentional mechanism is able to focus the high-resolution parts of the retina-like
grid on the boundaries between the classes which seem to be most difficult to
classify, resulting in increased accuracy of segmentation.

4 Conclusion

In this paper we have shown that the combined power of (1) a sequential atten-
tion mechanism controlling the shift of the focus of attention, (2) local retina-like
representation of the spatial distribution of class information and (3) ensemble
learning can lead to increased segmentation accuracy in biomedical segmentation
tasks. We expect that the proposed method can be especially useful for datasets
for which only a few training images are available.
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