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Abstract

With recent advances in deep learning, neuroimaging studies increasingly rely on convolutional 

networks (ConvNets) to predict diagnosis based on MR images. To gain a better understanding of 

how a disease impacts the brain, the studies visualize the salience maps of the ConvNet 

highlighting voxels within the brain majorly contributing to the prediction. However, these 

salience maps are generally confounded, i.e., some salient regions are more predictive of 

confounding variables (such as age) than the diagnosis. To avoid such misinterpretation, we 

propose in this paper an approach that aims to visualize confounder-free saliency maps that only 

highlight voxels predictive of the diagnosis. The approach incorporates univariate statistical tests 

to identify confounding effects within the intermediate features learned by ConvNet. The influence 

from the subset of confounded features is then removed by a novel partial back-propagation 

procedure. We use this two-step approach to visualize confounder-free saliency maps extracted 

from synthetic and two real datasets. These experiments reveal the potential of our visualization in 

producing unbiased model-interpretation.

1 Introduction

The development of deep-learning technologies in medicine is advancing rapidly [1]. 

Leveraging labeled big data and enhanced computational power, deep convolutional neural 

networks have been applied in many neuroscience studies to accurately classify patients with 

brain diseases from normal controls based on their MR images [1,2]. State-of-the-art 

saliency visualization techniques are used to interpret the trained model and to visualize 

specific brain regions that significantly contribute to the classification [2]. The resulting 

saliency map therefore provides fine-grained insights into how the disease may impact the 

human brain.

Despite the promises of deep learning, there are formidable obstacles and pitfalls [1,3]. One 

of the most critical challenges is the algorithmic bias introduced by the model towards 

confounding factors in the study [4]. A confounding factor (or confounder) correlates with 

both the dependent variable (group label) and independent variable (MR image) causing 

spurious association. For instance, if the age distribution of the disease group is different 

from that of the normal controls, age might become a potential confounder because one 
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cannot differentiate whether the trained model characterizes neurodegeneration caused by 

the disease or by normal aging.

Since the end-to-end training scheme disfavors any additional intervention, controlling for 

confounding effects in deep learning is inherently difficult. This often leads to 

misinterpretation of the trained model during visualization: while some salient regions 

correspond to true impact of the disease, others are potentially linked to the confounders. In 

this paper, we present an approach that identifies confounding effects within a trained 

ConvNet and removes them to produce confounder-free visualization of the model. The 

central idea is first to detect confounding effects in each intermediate feature via univariate 

statistical testing. Then, the influence of confounded features is removed from the saliency 

map by a novel “partial back-propagation” operation, which can be intuitively explained by 

a chain-rule derivation on voxelwise saliency scores. This operation is efficiently 

implemented with a model refactorization trick. We apply our visualization procedure to 

interpret ConvNet classifiers trained on a synthetic dataset with known confounding effects 

and on two real datasets, i.e., MRIs of 345 adults for analyzing Human Immunodeficiency 

Virus (HIV) effects on the brain and MRIs of 674 adolescents for analyzing sexual 

dimporphsim. In all three experiments, our visualization shows the potential in producing 

unbiased saliency maps compared to traditional visualization techniques.

2 Confounder-Aware Saliency Visualization

We base our approach on the saliency visualization proposed in [5]. Given an MR image ℐ
and a trained ConvNet model, saliency visualization produces a voxelwise saliency map 

specific to ℐ indicating important regions that strongly impact the classification decision. 

Without loss of generality, we assume a ConvNet model is trained for a binary classification 

task (pipeline generalizable to multi-group classification and regression), where the 

prediction output is a continuous score s ∈ [0, 1]. Then, the saliency value at voxel v is 

computed as the partial derivative ∣ ∂s ∕ ∂ℐv ∣. Intuitively, it quantifies how the prediction 

changes with respect to a small change in the intensity value at voxel v. Computationally, 

this quantity can be computed efficiently using back-propagation.

As discussed, when the ConvNet is confounded, some salient regions may actually 

contribute to the prediction of confounding variables rather than the group label. To address 

this issue, we propose a two-step approach to remove confounding effects from the saliency 

map enabling an unbiased interpretation of a trained ConvNet. To do this, we assume that a 

typical ConvNet architecture is composed of an encoder and a predictor. The encoder 

contains convolutional layers (including their variants and related operations such as 

pooling, batch normalization and ReLU) that extract a fixed-length feature vector 

fi ∈ ℝM = [fi
1, …, fi

M] from the ith training image. The predictor, usually a fully connected 

network, takes the M features as input and produces a prediction score si for image i. To 

disentangle confounding effects from the saliency map, we propose in Section 2.1 to first 

test each of the M features separately for confounding effects using a general linear model 

(GLM). Next, the influence from the subset of features with significant confounding effects 
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can be removed from the saliency map by performing a novel partial back-propagation 

procedure based on an intuitive chain-rule derivation (Section 2.2).

2.1 Univariate Test for Identifying Confounding Effects

This section introduces a way to test for the presence of confounding effect within a specific 

feature. Let fj = [f1
j, …, fN

j ] denote the jth feature derived from all N training images. 

Likewise, denote s = [s1, …, sN] as the N prediction scores and z = [z1, …, zN] as a 

confounding variable (e.g., age of the N subjects). In this work, we use GLM [6] to perform 

a group-level statistical test for detecting whether the relationship between s and fj is 

confounded by z. Specifically, GLM decomposes the variance in fj into variance explained 

by s and variance explained by z. The model reads

fj = β0 + β1s + β2z . (1)

We claim feature fj is confounded by z if the null hypothesis that linear coefficient β2 is zero 

can be rejected (e.g., p < 0.05 by t-test). In other words, when the variance in fj is partially 

explained by z, fj potentially contributes to the prediction of the confounder rather than the 

key variable of interest. This analysis can be extended to handle multiple confounding 

variables, where all confounders are included in the GLM as independent covariates. Then, 

fj is confounded when the p-value for at least one confounder is significant. Note, this model 

is a specific instance of the mediation model [7], a popular model for confounding analysis. 

However, our model makes fewer assumptions so that it is more sensitive in detecting 

confounding effects than the mediation model. We also emphasize that such confounding 

analysis can only be performed on the feature-level instead of voxel-level. Unlike features 

encoding geometric patterns that are commensurate within a group, voxel intensities are 

only meaningful within a neighborhood but variant across MRIs. As such, removing 

confounding effects based on feature-analysis is prevalent in traditional feature-based 

models (non-deep-learning models) [8,9].

Repeating the above analysis for all M features, we generate a binary mask b ∈ [0, 1]M = 

[b1, …, bM], where bj = 0 indicates the presence of confounding effect in the jth feature and 

bj = 1 otherwise.

2.2 Visualization via Partial Back-Propagation

To generate a saliency map unbiased towards the subset of confounded features, we further 

investigate the voxelwise partial derivative. Based on the chain-rule,

∂si
∂ℐv

= ∂si(fi
1, …, fi

M)
∂ℐv

= ∑
j = 1

M ∂si
∂fi

j
∂fi

j

∂ℐv
. (2)

Eq. (2) factorizes the voxelwise partial derivative with respect to the M features, where each 

∂si ∕ ∂fi
j quantifies the impact of the jth feature on the prediction. Therefore, to derive a 
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confounder-free saliency map, we set this impact to zero for the confounded features. In 

doing so, the saliency score can be computed as

∑
j = 1

M
bj ∂si

∂fi
j

∂fi
j

∂ℐv
. (3)

Computationally, this corresponds to a partial back-propagation procedure, where the 

gradient is only back-propagated through the un-confounded features.

The Refactorization Trick.—We show that performing the partial back-propagation for a 

training image ℐ can be implemented by refactorizing the trained ConvNet model and then 

applying the original visualization pipeline of full back-propagation. As enforcing a zero 

∂fi
j ∕ ∂ℐv is equivalent to fixing fi

j to a constant value independent of the input image, we 

design a dummy layer ℒ between the encoder and the predictor that performs 

ℒ(x) = x ⊗ bi ⊕ ((1 − bi) ⊗ yi), where ⊗ and ⊕ denote element-wise operators, and yi is a 

constant feature vector for image i pre-computed by the trained ConvNet. As shown in Fig. 

1b, the dummy layer fixes the value of confounded features while keeping un-confounded 

features dependent on the input image. As such, the partial back-propagation of Eq. (3) can 

by simply computed by running the full back-propagation on the refactorized model. Note, 

model refactorization is performed for each MR image independently to yield subject-

specific saliency maps.

3 Experiments

We first performed synthetic experiments, in which image data were imputed by known 

confounding effects so that we could test whether the proposed approach can successfully 

remove those effects during visualization. Next, we applied the approach to two real datasets 

to visualize (1) the impact of HIV on brain structures while controlling for aging effects; (2) 

sexual dimorphism during adolescence while controlling for ‘puberty stage’.

3.1 Synthetic Data

We first generated a synthetic dataset containing two groups. Each group consisted of 512 

2D images (dimension: 32 × 32 pixels). Each image was generated by 4 Gaussians (Fig. 2a), 

the width of which was controlled by the standard deviation σ. For each image of Group 1, 

we sampled σ from the uniform distribution U(2, 6). Images of Group 2 generally had wider 

distributions as we sampled from U(4, 8) instead. To predict group labels from the synthetic 

images, we constructed a simple ConvNet with the encoder consisting of 3 stacks of 2*2 

convolution/ReLu/max-pooling layers and producing 32 intermediate features. The fully-

connected predictor had one hidden layer of dimension 16 with tanh as the non-linear 

activation function. We trained the network for binary classification on the entire synthetic 

dataset as the focus here was to interpret the trained model as opposed to measuring 

classification accuracy. With the trained ConvNet, we first applied the original visualization 

pipeline to each image and averaged the resulting subject-specific saliency maps. The 
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average saliency map shown in Fig. 2b indicates that all 4 Gaussians contributed to the 

classification.

Next, we viewed the width of the two off-diagonal Gaussians, i.e., the standard deviations 

σB of Block B and σC of Block C as confounders. Based on Eq. 1, we then tested the 

presence of confounding effects in each of the 32 intermediate features with the following 

GLM: fj = β0 + β1s + βBσB + βCσC. The results revealed that all features extracted from 

Blocks B and C were detected as confounded (p < 0.05 for either βB or βC), while only 

features from Blocks A and D were identified as unconfounded (p ≥ 0.05 for both βB and 

βC). We can see that our conservative test was sensitive in detecting confounding effects (no 

false negative but several false positives), thereby potentially removing some features 

representing true group difference. Such trade-off can be controlled by the p-value threshold 

used in the GLM tests. Finally, using the binary mask (yellow mask in Fig. 2d) for partial 

back-propagation, we produced a confounder-free average saliency map (Fig. 2e) that 

successfully removed the confounding effects.

3.2 Visualizing HIV Effects

The second experiment examined the impact of HIV on the human brain. The classification 

was performed on the T1-weighted MRI data of 223 control subjects (CTRL) and 122 HIV 

patients [8]. Participants ranged in age between 18–86 years, and there was a significant age 

difference between CTRL and HIV subjects (CTRL: 45 ± 17, HIV: 51 ± 8.3, p<0.001 by 

two-sample t-test). As HIV has been frequently suggested to accelerate brain aging [10], age 

is therefore a confounder that needs to be controlled for when interpreting the saliency map 

associated with the trained classifier.

Preprocessing and Classification.—The MR images were first preprocessed by 

denoising, bias field correction, skull striping, affine registration to the SRI24 template 

(which accounts for differences in head size), and re-scaling to a 64 × 64 × 64 volume [8]. 

Even though the present study focused on the visualization technique, we measured the 

classification accuracy as a sanity check via 5-fold cross validation. To ensure the classifier 

can reasonably learn the group difference between HIV and CTRL subjects, the training 

dataset was augmented by random shifting (within one-voxel distance), rotation (within one 

degree) in all 3 directions, and left-right flipping. Note, the flipping was based on the 

assumption that HIV infection affects the brain bilaterally [8]. The data augmentation 

resulted in a balanced training set of 1024 CTRLs and 1024 HIVs.

As the flipping removed left-right orientation, the ConvNet was built on half of the 3D 

volume containing one hemisphere. The encoder contained 4 stacks of 2*2*2 3D 

convolution/ReLu/batch-normalization/max-pooling layers yielding 4096 intermediate 

features. The fully-connected predictor had 2 hidden layers of dimension (64, 32) with tanh 

as the non-linear activation function. An L2-regularization (λ = 0.1) was applied to all fully-

connected layers. Based on this ConvNet architecture, we achieved 73% normalized 

accuracy for HIV/CTRL classification, which was comparable to other recent studies on this 

dataset [8].
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Model Visualization.—To visualize the HIV effect, we re-trained the ConvNet on a 

dataset of 1024 CTRLs and 1024 HIVs augmented from the entire dataset of 345 MRIs. We 

first visualized the average saliency map produced by the original visualization pipeline. 

Since the ConvNet operated on only one hemisphere, we mirrored the resulting average 

saliency map to the other hemisphere to create bilaterally symmetric display and overlaid it 

on the SRI24 T1 atlas (Fig. 3a). For comparison, we then visualized the confounder-free 

saliency map produced by our approach. Specifically, we tested each of the 4096 features 

with fj = β0 + β1s + β2age, and 804 were identified to be confounded by age. Fig. 3b shows 

the saliency map after removing aging effects, and Fig. 3c shows that saliency at the 

posterior ventricle (red regions) was attenuated by our approach indicating those regions 

contained aging effects instead of HIV effects. This finding is consistent with current 

concept that the ventricular volume significantly increases with age [11].

3.3 Visualizing Sexual Dimorphism

The third experiment aimed to improve understanding of sexual dimorphism in brain 

development that emerges during adolescence. The classification was performed on the 

baseline T1 MR images of 334 boys and 340 girls (age 12-21) from the National Consortium 

on Alocohol and NeuroDevelopment in Adolescence (NCANDA) [12]. All subjects met the 

no-to-low alcohol drinking criteria of the study, and there was no significant age-difference 

between boys and girls (p>0.5 two-sample t-test). As puberty stage [12] of girls was 

significantly higher than boys during adolescence, the pubertal development score (PDS: 

boys 2.86±0.7, girls 3.41 ±0.6, p<0.001 by two-sample t-test) was a potential confounder of 

the study.

All experimental setups complied with the previous HIV study. As the first attempt of 

predicting sex on the NCANDA data, we achieved 89.5% normalized accuracy based on a 5-

fold cross-validation. The original saliency map produced for the ConvNet trained on the 

entire augmented dataset is shown in Fig. 3d. After testing and removing PDS effects, the 

confounder-free saliency map is shown in Fig. 3e. Consistent with existing adolescence 

literature, sex difference was mainly found in the temporal lobe [13]. Fig. 3f indicates PDS 

effects mainly existed in the frontal and inferior parietal region. Another interesting 

observation is in the caudate, which has been frequently reported as proportionately larger in 

female participants across different ages [7]. As shown in our results, the saliency at the 

caudate region attenuated after removing confounding effects, suggesting a potential 

compounding effect of PDS in that region.

4 Discussion and Conclusion

In this paper, we introduced a novel approach for confounder-free visualization and 

interpretation of a trained ConvNet. By performing partial back-propagation with respect to 

a set of unconfounded intermediate features, the approach disentangled true group difference 

from confounding effects and produced unbiased saliency maps. We successfully illustrated 

its usage on a synthetic dataset with groundtruth confounding effects and two real 

neuroimaging datasets. Because our approach is a type of post-hoc analyses with respect to a 

trained model, further extension could potentially integrate similar confounder-control 
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procedures during model-training time to fully explore unbiased group differences within a 

dataset.
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Fig. 1: 
Our confounder-aware visualization is composed two steps: (a) A GLM test is performed on 

each individual feature collected over all training images to detect confounding effects. (b) 

For each image, the model is refactorized to fix the value of confounded features, thereby 

enabling a partial back-propagation to derive a confounder-free saliency map.
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Fig. 2: 
Synthetic experiments: (a) Each synthetic image contains 4 Gaussians that are created 

differently between the two groups; (b) Average saliency map produced by the original 

visualization pipeline; (c) Widths of the two off-diagonal Gaussians are considered as 

confounders; (d) GLM identifies selective features, mainly in Blocks B and C, as 

confounded; (e) Removing the confounded features in the visualization leads to a 

confounder-free saliency map.
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Fig. 3: 
Visualization of ConvNets trained for HIV/CTRL classification (top row) and sexual 

dimorphism (bottom row).
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