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Abstract

Lesions characterized by computed tomography (CT) scans, are arguably often
elliptical objects. However, current lesion detection systems are predominantly
adopted from the popular Region Proposal Networks (RPNs) [21] that only propose
bounding boxes without fully leveraging the elliptical geometry of lesions. In this
paper, we present Gaussian Proposal Networks (GPNs), a novel extension to RPNs,
to detect lesion bounding ellipses. Instead of directly regressing the rotation angle
of the ellipse as the common practice, GPN represents bounding ellipses as 2D
Gaussian distributions on the image plain and minimizes the Kullback-Leibler
(KL) divergence between the proposed Gaussian and the ground truth Gaussian for
object localization. We show the KL divergence loss approximately incarnates the
regression loss in the RPN framework when the rotation angle is 0. Experiments
on the DeepLesion [27] dataset show that GPN significantly outperforms RPN for
lesion bounding ellipse detection thanks to lower localization error. GPN is open
sourced at https://github.com/baidu-research/GPN.

1 Introduction

Current state-of-the-art object detection systems are predominantly based on deep neural networks that
learn to propose object regions which are usually represented by bounding boxes [21, 15, 11, 1, 6, 4].
Region Proposal Networks (RPNs), first introduced in Faster R-CNN [21], simultaneously predicts
the objectness and regions bounds at every predefined anchor location on a grid of feature map. When
object regions are annotated as bounding boxes, the region bounds in RPN are defined by the two
center coordinates, the width and the height of the object region with respect to the corresponding
anchor. In this case, regressing the regions bounds is directly optimizing the overlap between the
proposed bounding box and the ground truth bounding box.

Lesions characterized by computed tomography (CT) scans are often elliptical and additional geom-
etry information about the lesion regions may be annotated besides bounding boxes. For example,
the large-scale medical imaging dataset DeepLesion [27] recently released from NIH is annotated
with the response evaluation criteria in solid tumors (RECIST) diameters. Each RECIST-diameter
annotation consists of two axies, the first one measures the longest diameter of the lesion and the
second one measures the longest diameter perpendicular to the first axis. Therefore, the RECIST
diameters closely represent the major and minor axises of a bounding ellipse of the lesion.

Extensions for bounding ellipse detection based on the RPN framework have been introduced to also
predict the rotation angle of the object [8, 22, 14, 10, 28, 16, 25, 29, 19]. However, due to the rotation
angle, it is not trivial to directly optimizing the overlap between the proposed bounding ellipse and
the ground truth bounding ellipse within the RPN framework. Most of the existing methods either
directly use an ellipse regressor to minimize the difference between the proposed angle and the
ground truth angle, e.g. in the co/tangent domain [8, 14], as an additional term in the regression loss
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Figure 1: Comparison between Region Proposal Networks and Gaussian Proposal Networks. Instead
of proposing bounding boxes, Gaussian Proposal Networks propose bounding ellipses as 2D Gaussian
distributions on the image plane and use a single KL divergence loss for object localization.

(a) (b)

Figure 2: Two illustrative examples of how the rotation angle may affect the overlap between two
ellipses differently. The ellipse of solid line is the ground truth and the ellipse of dash line is proposed
by the detection model, where both ellipses only differ in the rotation angle. (a) the major axis is
significantly longer than the minor axis, (b) the major axis is slightly longer than the minor axis.

for localization. Other methods discretize the rotation angle first, and then predict the angle category
as a classification problem [22].

We argue that directly regressing the rotation angle is not optimal for bounding ellipse localization.
The rotation angle and the aspect ratio, i.e. the ratio of the major axis to the minor axis, jointly affect
the overlap between two ellipses. Figure 2 shows two extreme examples of a proposed bounding
ellipse and its ground truth bounding ellipse where they only differ in the rotation angle. In Figure 2a,
where the aspect ratio is significantly larger than 1, a small shift in the rotation angle results in a
dramatic change of overlap between the two ellipses. However in Figure 2b, where the major axis
is almost equal length to the minor axis, the shift of the rotation angle merely affects the overlap
between the two ellipses. Therefore, it may not be optimal or sometimes even unnecessary to directly
regress the rotation angle, when the essential goal is to optimize the overlap between the proposed
ellipse and the ground truth ellipse.
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In this work, we present Gaussian Proposal Networks (GPNs) that learn to propose bounding ellipses
as 2D Gaussian distributions on the image plane. Figure 1 shows an illustrative comparison between
GPN and RPN. Unlike most of the extensions to the RPN framework that introduce an additional
term to directly regress the rotation angle for object localization, GPN minimizes the Kullback-
Leibler (KL) divergence between the proposed Gaussian distribution and the ground truth Gaussian
distribution as one single loss for localization. KL divergence directly measures the overlap of one
distribution with respect to a reference distribution. When the two distributions are Gaussian, KL
divergence has analytical form and is differentiable. Therefore, GPN can be readily implemented
with standard automatic differentiation packages [20] and trained with back-propagation algorithm.
We also show that when the rotation angle is 0, the KL divergence loss approximately incarnates
the regression loss used in the RPN framework for bounding box localization. We experiment
the efficacy of GPN for detecting lesion bounding ellipses on the DeepLesion [27] dataset. GPN
outperforms RPN by a significant margin in terms of free-response receiver operating characteristic
across different experimental settings. Error analysis shows that GPN achieves significant lower
localization error compared to RPN. Further analysis on the distribution of predicted rotation angles
from GPN supports our conjecture that it may not be necessary to regress the rotation angle when the
ground truth bounding ellipse has similar lengths of major and minor axises.

2 Related work

2.1 Region proposal networks (RPNs)

The design of GPN generally follows the principles of RPN [21]. RPN has a fully convolutional
backbone network that processes the input image and generates a feature map grid. The feature
vector of each position on the feature map is further processed with a 3× 3 convolutional layer and
then associated with potentially multiple anchors of varies scales and aspect ratios. The ground truth
region of interests (RoIs) are then assigned to anchors that meet certain overlapping criteria, e.g.
intersection over union (IoU) greater than 0.7. Finally, the 3× 3 convolutional layer is followed by
two separate 1× 1 convolutional layers, one is predicting the objectness scores of the RoIs and the
other is predicting the bounding box offsets of the RoIs with respect to the anchors. RPN is jointly
trained with one classification loss and multiple smoothed L1 regression losses.

Compared to RPN, GPN proposes bounding ellipses as 2D Gaussian distributions and minimizes a
single KL divergence loss between two Gaussian distributions for localization. GPN could be applied
with the same extensions that apply to RPN, such as training with multi-scale feature maps [11, 15, 4],
online hard negative mining [23] and focal loss [12]. However, in the Faster R-CNN two-stage
detector, a second R-CNN classifier [21] is appended to RPN through a RoI pooling layer [5] and
classifies each RoI into specific object categories or background. Performing RoI pooling with
bounding ellipses is nontrivial and is beyond the scope of this paper. Thus, GPN currently only
applies to one-stage detectors like SSD [15], where object bounds and categories are jointly predicted
through one single network.

2.2 Bounding ellipse and KL divergence

Bounding ellipse annotation has been widely used in human faces detection [9]. To generate bounding
ellipses, most of the detection methods directly map detected bounding boxes into ellipses [10, 28,
16, 25, 29]. Shi et al. [22] discretize the rotation angle and classify it into different categories. Hu et
al. [8] train a separated ellipse regressor to regress the cotangent of the rotation angle using features
extracted offline from deep networks. Opitz et al. [19] also point out the problem that different
parameters of bounding ellipses, i.e. the center coordinates, the major and minor axises and the
rotation angle, impact ellipses overlap differently, thus is in spirit similar to our argument. However,
in order to maximize the overlap, Opitz et al. [19] rasterize both the proposed ellipse and the ground
truth ellipse and numerically compute the gradient of each ellipse parameter by counting the change
of rasterized overlap in pixels. In comparison, GPN uses KL divergence to analytically optimize
the overlap between two Gaussian distributions as a surrogate to optimizing ellipses overlap. Najibi
et al. [18] also use Gaussian distributions to generate the saliency maps of objects based on their
bounding boxes. But they do not consider the rotation angle and do not use KL divergence loss for
optimization.
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KL divergence has been used to measure the ellipticity and circularity of a given set of points [17].
To the best of our knowledge, the most similar work to our approach is the recent Softer-NMS [7]
that also uses KL divergence for bounding box localization. However, the motivation of Softer-NMS
is to model the location uncertainty of each corner of proposed bounding boxes through 1D Gaussian
distribution. The motivation of GPN is to propose bounding ellipses as 2D Gaussian distributions on
the image plain. Therefore, it is not directly comparable to Softer-NMS. We discuss the differences
and connections between Softer-NMS and GPN with more details in the Supplementary.

3 Gaussian Proposal Networks (GPNs)

This section describes the mathematical and implementation details of GPN. We first formulate
the representation of ellipses as 2D Gaussian distributions in Section 3.1. We then derive the KL
divergence between 2D Gaussian distributions using this representation in Section 3.2. Next we draw
connections between the KL divergence loss and the regression loss used in the RPN framework in
Section 3.3. Finally, we provide some implementation details in Section 3.4.

3.1 Ellipses as 2D Gaussian distributions

The equation of an ellipse in a 2D coordinate system without rotation is given by

(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

= 1, (1)

where we denote µx, µy as the center coordinates of the ellipse, and σx, σy as the lengths of semi-
axises along x and y axises.

The probability density function of a 2D Gaussian distribution is given by

f(x|µ,Σ) =
exp(− 1

2 (x− µ)ᵀΣ−1(x− µ))

2π|Σ|
1
2

, (2)

where x is the vector representation of coordinates (x, y), µ is the mean, Σ is the covariance matrix
and |Σ| is the determinant of the covariance matrix. If we assume the off-diagonal term in Σ is 0 and
parameterize µ,Σ as

µ =

[
µx
µy

]
,Σ =

[
σ2
x 0

0 σ2
y

]
, (3)

then the ellipse equation in Equation 1 corresponds to the density contour of the 2D Gaussian
distribution when

(x− µ)ᵀΣ−1(x− µ) = 1. (4)

When the major axis of the ellipse is rotated of an angle θ with respect to the x axis, we use a rotation
matrix R(θ) to map the coordinates in the original (x, y) system into a new (x′, y′) system, where
the major axis of the ellipse is aligned with the x′ axis in the new system as shown in Figure 3

[
x′

y′

]
= R(θ)

[
x
y

]
, R(θ) =

[
cos θ sin θ
− sin θ cos θ

]
. (5)

For example, the coordinates of (1, 0) and (0, 1) in the (x, y) system, are (cos θ,− sin θ) and
(sin θ, cos θ) in the (x′, y′) system. If we use σl, σs to denote the lengths of the semi-major (long) and
semi-minor (short) axises of the ellipse in the (x′, y′) system and assume it is centered at (µ′x, µ

′
y),

then the ellipse equation in the (x′, y′) system is given by

(x′ − µ′)ᵀ(Σ′)−1(x′ − µ′) = 1, (Σ′)−1 =

[
1
σ2
l

0

0 1
σ2
s

]
, (6)

and again, x′ and µ′ are the vector representations of (x′, y′) and (µ′x, µ
′
y).
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Figure 3: Correspondence between the original coordinate system (x, y), and the rotated coordinate
system (x′, y′) with a rotation angle θ. The major axis of the ellipse is aligned with the x′ axis in
the rotated system. The coordinates of (1, 0) and (0, 1) in the (x, y) system, are (cos θ,− sin θ) and
(sin θ, cos θ) in the (x′, y′) system.

With the rotation matrix R(θ), the ellipse equation in the (x, y) system can be derived as

[R(θ)(x− µ)]ᵀ(Σ′)−1[R(θ)(x− µ)] = 1,

(x− µ)ᵀ[Rᵀ(θ)(Σ′)−1R(θ)](x− µ) = 1,
(7)

where µ is the center coordinates (µx, µy) of the ellipse in the (x, y) system.

Finally, we can use a 2D Gaussian distribution in the (x, y) system parameterized by

µ =

[
µx
µy

]
,Σ−1 = Rᵀ(θ)

[
1
σ2
l

0

0 1
σ2
s

]
R(θ) (8)

to represent the ellipse centered at (µx, µy), with semi-major and semi-minor axises of lengths
(σl, σs), and a rotation angle of θ between its major axis and the x axis. Note that θ ∈ [−π2 ,

π
2 ].

The goal of GPN is to propose bounding ellipses such that their parameters, (µx, µy, σl, σs, θ), match
the ground truth ellipses through the criteria of KL divergence.

3.2 KL divergence of 2D Gaussian distributions

The KL divergence between a proposed 2D Gaussian distribution Np and a target 2D Gaussian
distribution Nt is given by [2]

DKL(Nt||Np) =
1

2

[
tr(Σ−1p Σt) + (µp − µt)

ᵀΣ−1p (µp − µt) + ln
|Σp|
|Σt|

− 2

]
, (9)

where tr(X) is the trace of matrix X.

Assuming Np and Nt are parameterized by (µxp
, µyp , σlp , σsp , θp) and (µxt

, µyt , σlt , σst , θt) fol-
lowing Equation 8, we can derive each term in Equation 9 as

tr(Σ−1p Σt) = cos2∆θ
σ2
lt

σ2
lp

+ cos2∆θ
σ2
st

σ2
sp

+ sin2∆θ
σ2
lt

σ2
sp

+ sin2∆θ
σ2
st

σ2
lp

, (10)

(µp − µt)
ᵀΣ−1p (µp − µt) =

(cos θp∆x+ sin θp∆y)2

σ2
lp

+
(cos θp∆y − sin θp∆x)2

σ2
sp

, (11)
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ln
|Σp|
|Σt|

= ln
σ2
lp

σ2
lt

+ ln
σ2
sp

σ2
st

, (12)

where we define

∆θ = θp − θt,∆x = µxp − µxt ,∆y = µyp − µyt . (13)

The exact details of deriving each term in Equation 10 through Equation 12 are provided in the
Supplementary.

3.3 Connection to the RPN regression loss

The general form of KL divergence derived in the previous section looks rather complex. However, if
we omit the rotation angle, i.e. assuming θp and θt are always 0, then σl and σs are actually the half
width and the half height of the bounding box that tightly surrounds the bounding ellipse. And we
obtain a much simpler form of KL divergence as

DKL(Nt||Np) =
1

2

[
w2
t

w2
p

+
h2t
h2p

+
∆2x

w2
p

+
∆2y

h2p
+ ln

w2
p

w2
t

+ ln
h2p
h2t
− 2

]
. (14)

where we have replaced (σlp , σlt) with (wp, wt), and (σsp , σst) with (hp, ht) for easy comparison
with the RPN regression loss.

For bounding box regression, RPN outputs four terms for each proposed bounding box [21]

tpx = (xp − xa)/wa, t
p
y = (yp − ya)/ha,

tpw = ln(wp/wa), tph = ln(hp/ha),
(15)

to match the four targets from the ground truth bounding box

ttx = (xt − xa)/wa, t
t
y = (yt − ya)/ha,

ttw = ln(wt/wa), tth = ln(ht/ha),
(16)

where (xa, ya, wa, ha) are the center coordinates, width and height of the matching anchor.

RPN uses smoothed L1 loss for regression. When the loss is small, smoothed L1 loss becomes
squared loss. Therefore, for center coordinates regression, the squared loss are

(tpx − ttx)2 =
∆2x

w2
a

, (tpy − tty)2 =
∆2y

h2a
, (17)

which are very similar to the middle two terms in Equation 14, except that the RPN regression loss
normalizes (∆x,∆y) by the anchor width and height (wa, ha), where KL divergence normalizes
them by the predicted width and height (wp, hp).

When the loss is large, the L1 losses for width and height regression are

|tpw − ttw| =
∣∣∣∣lnwpwt

∣∣∣∣ , |tph − tth| = ∣∣∣∣lnhpht
∣∣∣∣ , (18)

which are equivalent to the last two terms (ignoring the constant −2) in Equation 14 when wp ≥
wt, hp ≥ ht. However, since KL divergence is asymmetric, when wp < wt, hp < ht, KL divergence
penalizes differently through the first two terms in Equation 14.

The comparison between the KL divergence loss and the smoothed L1 regression loss in RPN,
not only provides another perspective towards the efficacy of RPN for object localization, but also
suggests an alternative loss for bounding box localization, i.e. Equation 14. However, the efficacy of
the KL divergence loss for general bounding box localization needs comprehensive analysis on other
benchmark datasets, e.g. PASCAL VOC [3] and MS COCO [13], and is beyond the scope of this
paper.
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Figure 4: One example of slice image and its RECIST diameters annotation from the DeepLesion
dataset [27]. The red line is the major axis that measures the longest diameter of the annotated lesion
and the blue line is the minor axis that measures the longest diameter perpendicular to the major axis.

3.4 Implementation details

To implement the KL divergence loss in practice, we follow the design of anchors from RPN and
make the four targets the same as Equation 16 based on the matching anchor, plus the tangent of
the rotation angle following [8]. We let GPN output four terms the same as Equation 15, plus an
additional term for the tangent of the rotation angle. Finally, we plug both the network outputs and
the targets into Equation 9 through Equation 12 to compute the KL divergence loss.

The KL divergence loss can be directly added with the classification loss without any balancing
factors used in RPN

Ltotal = Lcls + LKLD. (19)

The only important caveat we found to make the KL divergence loss well bounded is to initialize
the weights of the 1× 1 convolutional layer for bounding ellipse localization within a small range.
Specifically, we use a Gaussian distribution with 0 mean and standardization of 0.001 to initialize the
weights.

GPN was implemented with PyTorch-0.3.1 [20].

4 Experiments

We present comprehensive evaluation of GPN for detecting lesion bounding ellipses on the DeepLe-
sion dataset [27]. We first introduce some details about the DeepLesion dataset in Section 4.1, and
experiments setup in Section 4.2. Next, we show GPN significantly outperforms RPN for bounding
ellipse detection across different settings in Section 4.3. Finally, we present a comprehensive error
analysis in Section 4.4.

4.1 DeepLesion dataset

DeepLesion is a large-scale medical imaging dataset recently released from NIH [27]. It contains
32,735 lesions in 32,120 CT slice images from 4,427 unique patients. More than 99% of the slice
images are 512×512 pixels. Each lesion is annotated with two response evaluation criteria in solid
tumors (RECIST) diameters. The first one measures the longest diameter of the lesion and the second
one measures the longest diameter perpendicular to the first diameter, so they closely represent
the major and minor axises of a bounding ellipse, and we use this notion thereafter. We note this
assumption may be inaccurate when the center of the minor axis is not aligned with the center of the
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(a) (b)

Figure 5: (a) the distribution of the rotation angles between the lesion’s major axis and the x axis in
degree, (b) the distribution of lesions’ aspect ratios.

FPs per image 0.5 1 2 4 8 16
GPN-5anchor 0.36 0.50 0.62 0.72 0.76 0.79
RPN-5anchor 0.31 0.43 0.53 0.61 0.65 0.68
GPN-1anchor 0.45 0.56 0.65 0.72 0.75 0.77
RPN-1anchor 0.41 0.51 0.58 0.63 0.66 0.67
Faster R-CNN 0.57 0.67 0.76 0.82 0.86 0.89

Table 1: Detection sensitivities of GPN and RPN on the test set of DeepLesion at different false
positives per image. Ellipse IoU of 0.5 is used as the threshold. The Faster R-CNN results are
from [26] where the IoU is computed based on bounding box.

major axis. However, we found that for more than 90% of the RECIST-diameter annotations, the
center of the minor axis is within the middle 20% range of the major axis, so we think the assumption
approximately holds. Figure 4 shows an example of slice image and its RECIST-diameter annotation.
DeepLesion has a wide range of rotation angles and aspect ratios, therefore it is particularly challenge
for bounding ellipse detection and localization. Figure 5a shows the distribution of the rotation angles
between the lesion’s major axis and the x axis. Figure 5b shows the distribution of lesions’ aspect
ratios. For more details about the DeepLesion dataset please refer to [27].

4.2 Experiments setup

We follow the practices from [26] to convert the raw slice images with pixel value in Hounsfield Unit
(HU) into 512×512 three channel images with pixel values between 0 and 255. We use the official
split from DeepLesion for training (70%), validation (15%), and test (15%). All the networks are
trained with 20 epochs. We compute intersection over union (IoU) between ellipses by rasterizing
ellipses first and then counting the pixel overlaps. However, this numerical approach is compute
intensive, therefore we only use it for performance evaluation. During training, we use the bounding
box that tightly surrounds the bounding ellipse to compute IoU for anchor assignment and non-
maximum suppression. Complete details about data preprocessing and model training are provided
in the Supplementary.

4.3 Performances for bounding ellipse detection

We evaluate the performances of GPN and RPN for bounding ellipse detection using a single-scale
feature map of stride 8 and five anchor scales, i.e. (16, 24, 32, 48, 96), following [26]. Compared to
the Faster R-CNN two-stage detector used in [26], both GPN and RPN are one-stage detectors that
suffer from overwhelming number of background proposals during training [12]. Therefore, we also
experiment training with just one anchor scale of 16 to mitigate this issue. Both settings are equally
applied to GPN and RPN except that GPN uses the KL divergence loss for localization while RPN
uses the default smoothed L1 loss for localization with the additional term to regress the tangent of
the rotation angle [8]. We use pretrained VGG-16 [24] as the backbone network following [26] and a
single anchor aspect ratio of 1:1.

Figure 6a and Table 1 show the overall performances of GPN and RPN on the test set of DeepLesion
across different settings measured by the free-response receiver operating characteristic (FROC).
FROC measures the detection sensitivity with different average false positives per image. We consider
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(a) (b)

Figure 6: (a) FROC curves of GPN and RPN on the test set of DeepLesion at 0.5 ellipse IoU threshold.
(b) Detection sensitivities of GPN and RPN on the test set of DeepLesion with different ellipse IoU
thresholds at 4 false positives per image.

Figure 7: Selected examples of proposed bounding ellipses from GPN-5anchor (cyan) and RPN-
5anchor (magenta) compared to the ground truth (orange) on the test set of DeepLesion. Only the
top 3 proposed ellipses with the highest classification scores from each model are selected for each
image.

a proposed bounding ellipse is correct if its IoU with the ground truth ellipse is greater or equal than
0.5. Note that, IoU between ellipses is a very stringent criteria, especially when the ellipse aspect
ratio is significantly larger than one as illustrated by Figure 2a.

GPN consistently outperforms RPN across both settings by a significant margin. We also include the
previous state-of-the-art results on the DeepLesion dataset based on Faster R-CNN [26] in Table 1.
Yet, the Faster R-CNN results were trained and evaluated on the bounding box that tightly surrounds
the bounding ellipse, so it is not directly comparable to our results. One anchor scale training improve
the performances of GPN when the average false positives per image is less or equal than 3.

4.4 Error analysis

Figure 7 shows a few examples of proposed bounding ellipses from GPN-5anchor and RPN-5anchor
compared to the ground truth on the test set of DeepLesion. To focus comparison on ellipse
localization, we only select proposed bounding ellipses that are overlapped with the ground truth by
both models. We can see that GPN detects ellipses of various sizes, rotation angles and aspect ratios
with more accurate overlaps than RPN. We present detailed error analysis in the next two sections.
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Figure 8: The upper panels are the distributions of predicted angles of GPN-5anchor and RPN-
5anchor with respect to the ground truth aspect ratio on the training set of DeepLesion. The lower
panels are the absolute degree errors of predicted angles of GPN-5anchor and RPN-5anchor with
respect to the ground truth aspect ratio on the training set of DeepLesion.

4.4.1 Localization error

We first investigate the contribution of localization error to detection performance. Figure 6b shows
the detection sensitivities of GPN and RPN with different ellipse IoU thresholds at 4 false positives
per image. We can see that, when the IoU threshold is small, both GPN and RPN have comparable
detection sensitivities since it is dominated by proposals vs background classification accuracy. As the
IoU threshold increases, the performance of RPN decreases significantly faster than GPN, suggesting
its localization error is significantly higher than GPN.

4.4.2 Rotation angle error

We also investigate the behaviors of rotation angle prediction of GPN and RPN. In the Introduction
Section, we conjecture that it may be unnecessary to directly regress the rotation angle for bounding
ellipse localization, especially when the ellipse aspect ratio is close to 1 as illustrated in Figure 2b.
The upper panels of Figure 8 show the distributions of predicted angles of GPN-5anchor and RPN-
5anchor with respect to the aspect ratio on the training set of DeepLesion. We notice when the
aspect ratio is close to 1, GPN mostly predicts the rotation angle around 0 since it merely affects
the ellipses overlap. On the other hand, because RPN directly regresses the rotation angle, the
distribution of its predicted angles is much wider regardless of the aspect ratio, and similar to the
ground truth distribution in Figure 5a. We notice the absolute degrees of predicted angles from GPN
rarely exceed 45◦. This is because GPN tends to flip the major and minor axises representation when
the ground truth rotation angle of the major axis is greater than 45◦ or less than −45◦, since the
flipped representation contributes symmetrically to the KL divergence loss.

The lower panels of Figure 8 show the absolute degree errors of predicted angles of GPN-5anchor
and RPN-5anchor on the training set of DeepLesion. We use the predicted longer axis as the actual
major axis to account for the flipping effect of GPN. We see the angle errors of both GPN and RPN
are significantly lower when the ground truth aspect ratio is significantly larger than 1. GPN does
have higher angle errors than RPN when the aspect ratio is close to 1 as expected. However, GPN
achieves slightly lower angle errors than RPN when the aspect ratio is larger than 2, even GPN is
not directly regressing the rotation angle. The general trend that the angle errors are lower when the
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aspect ratios are larger still holds on the test set for both GPN and RPN (figures are shown in the
Supplementary).

5 Discussion

In this work, we present Gaussian Proposal Networks (GPNs), a new extension to the popular Region
Proposal Networks (RPNs) [21], to detect bounding ellipses of lesions on CT scans. Compared to
RPN that uses multiple regression losses for bounding box localization, GPN views bounding ellipses
as 2D Gaussian distributions on the image plane, and optimizes the KL divergence between the
proposed Gaussian and the ground truth Gaussian for localization. We show the KL divergence loss
is closely connected to the regression loss used in RPN. On the large-scale medical imaging dataset
DeepLesion [27], GPN significantly outperforms RPN for bounding ellipse detection across different
experimental settings thanks to much lower localization error through the KL divergence loss. Further
error analysis reveals that directly regressing the ellipse rotation angle may be unnecessary when the
ellipse aspect ratio is close to 1.

We intend to further investigate the efficacy of GPN on nature image datasets with bounding ellipse
annotations, such as the FDDB benchmark [9]. It is also interesting to comprehensively test the KL
divergence loss derived in Section 3.3 for general bounding box localization on PASCAL VOC [3]
and MS COCO [13] and see if it also outperforms the current regression loss in RPN.
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