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Abstract

Recurrent neural networks (RNNs) were designed for dealing with time-series data and have 

recently been used for creating predictive models from functional magnetic resonance imaging 

(fMRI) data. However, gathering large fMRI datasets for learning is a difficult task. Furthermore, 

network interpretability is unclear. To address these issues, we utilize multitask learning and 

design a novel RNN-based model that learns to discriminate between classes while simultaneously 

learning to generate the fMRI time-series data. Employing the long short-term memory (LSTM) 

structure, we develop a discriminative model based on the hidden state and a generative model 

based on the cell state. The addition of the generative model constrains the network to learn 

functional communities represented by the LSTM nodes that are both consistent with the data 

generation as well as useful for the classification task. We apply our approach to the classification 

of subjects with autism vs. healthy controls using several datasets from the Autism Brain Imaging 

Data Exchange. Experiments show that our jointly discriminative and generative model improves 

classification learning while also producing robust and meaningful functional communities for 

better model understanding.

1 Introduction

Functional magnetic resonance imaging (fMRI) has become an important tool for 

investigating neurological disorders and diseases. In addition, machine learning has begun to 

play a large role, in which classification models are learned and interpreted to discover 

potential fMRI biomarkers for disease. Traditional approaches for building classification 

models from resting-state fMRI first parcellate the brain into a number of regions of interest 

(ROIs) and use functional connectivity between the ROIs as inputs to a classification 

algorithm [1]. Recently with the advent of deep learning, temporal inputs based on the time-

series data combined with recurrent neural network (RNN) models have been explored for 

predicting from fMRI [7,8,14]. Such RNN models are attractive for processing fMRI as they 

were designed for dealing with sequential data. However, the large sample sizes required for 

effective deep learning are difficult to gather for fMRI data, particularly for many different 

patient populations or types of studies.
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One way to handle the limited data problem is to apply multitask learning [4]. The idea in 

multitask learning is that shared information across related tasks is jointly learned in order to 

improve the learning of each individual task. For a classification task based on fMRI data, 

e.g., distinguish subjects with a given disease from healthy individuals, the amount of 

labeled data is often limited. Thus, we propose to apply multitask learning to improve the 

learning of a target discriminative task by jointly learning an auxiliary generative model for 

the fMRI data, which does not require any annotation. Moreover, simultaneous learning of 

the generative model will assist in interpreting the discriminative model.

Specifically, we propose to jointly learn a discriminative task while also learning to generate 

the input fMRI time-series by using an RNN with long short-term memory (LSTM). 

Generative RNN models have been extensively used in natural language processing, e.g., for 

text generation [9], but application to the medical imaging field has been limited. 

Furthermore, multitask learning with discriminative and generative components have been 

combined in many different neural network architectures, notably generative adversarial 

networks, but such a joint learning approach utilizing the RNN framework has only begun to 

be explored and under the context of adversarial training for a target generative task [2].

In this paper, we design a novel RNN-based model with LSTM to simultaneously learn a 

discriminative and generative task by utilizing the state information in a shared LSTM layer. 

Using fMRI ROI time-series as inputs, we interpret the LSTM block as modeling the 

coordination of functional activity in the brain and the nodes of the LSTM as representing 

functional communities, i.e., groupings of the input brain ROIs that work together to both 

generate the fMRI time-series and perform the discriminative task. We apply the proposed 

network for classification of ASD vs. healthy controls, validating on multiple datasets from 

the Autism Brain Imaging Data Exchange (ABIDE) I dataset. Compared to several recent 

methods, we achieve some of the highest accuracy reported on single-site ABIDE data. 

Finally, we evaluate the generative results by analyzing the robustness of the extracted 

functional communities and validate influential communities for classification in the context 

of ASD.

2 Methods

2.1 Network Architecture

LSTM Block for Communities—The LSTM module was designed to learn long-term 

dependencies in sequential data [10]. An LSTM cell is composed of 4 neural network layers 

with K nodes that modulate two state vectors, the hidden state ℎt ∈ ℝK and the cell state 

ct ∈ ℝK. The state vectors are updated using input from the current time point xt ∈ ℝR and 

state information from the previous time point ht−1 and ct−1:

gt = σ W gxt + Ugℎt − 1 + bg , with g ∈ i, f, o (1)

ct = tanh W cxt + Ucℎt − 1 + bc (2)
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ct = it * ct + ft * ct − 1,    ℎt = ot * tanh ct (3)

where for layer l ∈ {i, f, o, c}, Wl are the weights for the input, Ul are the weights for the 

hidden state, and bl are the bias parameters.

The proposed network first takes the fMRI ROI time-series as inputs to an LSTM layer (Fig. 

1, blue path). The purpose of this layer is to discover meaningful groupings of the ROIs, i.e. 

functional communities, that are important for both generating and classifying the input 

data. The LSTM block acts as a model for the interaction between R individual ROIs and K 
functional communities formed by the brain network to generate community activity. The 

activity generated by each functional community k is then represented by the hidden state ht 

(k) and cell state ct (k), which will serve as inputs to the rest of the network.

Standard community detection methods for fMRI perform clustering based on functional 

connectivity, where highly positively correlated ROIs are grouped into a community. In our 

approach, we propose defining a functional community by the interactions modeled in the 

LSTM and the generated ROI data (see Sec.2.2). To ensure that ROIs within a community 

have positive ties as in standard approaches, we constrain the input weights Wl to be non-

negative.

Discriminative Path—The discriminative portion of the network aims to classify subjects 

with ASD vs. typical controls (Fig. 1, orange path). The architecture is similar to the 

network in [7]. The difference is our approach first processes the input time-series through 

an LSTM layer that learns to represent functional communities of the ROI data. The hidden 
state of the LSTM cell at each time point is then fed to another LSTM layer, followed by a 

shared 1-node dense layer, mean pooling layer, and sigmoid activation to give the probability 

of ASD.

Generative Path—The generative portion of the network looks to generate the data at the 

next time point xT+1 of an input time-series with length T (Fig. 1, green path). The input is 

first processed by the same LSTM layer for functional communites as in the discriminative 

network. The final cell state cT of the LSTM cell is then passed to a dense layer with R 
nodes to produce the predicted ROI values for the next time point xT + 1 = W dcT + bd. To 

enforce that communities exert a positive influence on their members, we constrain Wd to be 

non-negative.

Model Training—The discriminative and generative paths are tied together during training 

with the loss function L = LG xT + 1, xT + 1 + λLD(y, y), where LG is the loss for the 

generative model, LD is the loss for the discriminative model, y ∈ {0, 1} is the true label (1 

denoting ASD), y is the predicted probability of ASD, and λ is a hyperparameter to balance 

the two losses. For regularization, we include dropout layers before the shared dense layer 

and mean pooling layer in the discriminative network and before the dense layer in the 

generative network.
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2.2 Extraction of Functional Communities

As described above, we propose interpreting each node of the first LSTM block as 

representing a functional community, where community activity is summarized by state 

vectors ht and ct. Since it is difficult to analyze the interactions between ROIs and 

communities via all the layers of the LSTM block, we propose defining the communities 

based on their influence on each individual ROI. Recall that the generative path uses the cell 

state cT as input to a dense layer to generate the next ROI values xT + 1 = W dcT + bd. From a 

graph structure perspective, a community is defined by densely connected nodes, i.e. each 

member of a community is strongly influenced by that community, but also the community 

is strongly influenced by its members. Thus, we will use the weights W d ∈ ℝR × K to denote 

the membership between individual ROIs and their functional communities. Row r of Wd 

represents the influence of each community on ROI r, while column k of Wd represents the 

influence of each ROI on community k. To provide hard membership assignments, we 

perform k-means clustering with 2 clusters on the membership weights in column k of Wd 

and assign the extracted ROIs in the cluster with larger weights to community k (Fig. 1, 

lower right).

3 Experiments

3.1 Data

We used resting-state fMRI data from the four ABIDE I [6] sites with the largest sample 

sizes: New York University (NY), University of Michigan (UM), University of Utah School 

of Medicine (US), and University of California, Los Angeles (UC). We selected 

preprocessed data from the Preprocessed Connectomes Project [5] using the Connectome 

Computation System pipeline, global signal regression and band-pass filtering, and the 

Automated Anatomical Labeling (AAL) parcellation with 116 ROIs. The extracted mean 

time-series of each ROI was standardized (subtracted mean, divided by standard deviation) 

for each subject.

Since the number of subjects per site is small for neural network training, we augmented the 

datasets by extracting all possible consecutive subsequences with length T = 30 (i.e., 1 min. 

scantime) from each subject, producing inputs of size 30×116. Thus, we augmented the data 

by a factor of ~150–250 for a total of ~14000–38000 samples per site. At test time, the 

predicted probability of ASD for a given subject was set to the proportion of subsequences 

labeled as ASD.

3.2 Experimental Methods

Models for classification of ASD vs. control were trained for each individual ABIDE site. 

We implemented the following LSTM-based networks which all take the ROI time-series 

data as input: the proposed joint discriminative/generative LSTM network (LSTM-DG); the 

same network but using the hidden state for both data generation and class discrimination 

(LSTM-H); the same network but with no generative constraint, i.e. only the discriminative 

loss (LSTM-D); and a single layer discriminative LSTM network as proposed in [7] (LSTM-

S). Models were implemented in Keras, with 50 nodes for the first LSTM (for functional 
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communities) and 20 nodes for the second LSTM. Optimization was performed using the 

Adam optimizer, with binary cross-entropy for LD, mean squared error for LG, a batch size 

of 32, and early stopping based on validation loss and a patience of 10 epochs. For joint 

discriminative/generative networks, we set λ = 0.1 so that LG and LD are on similar scales. 

We also implemented a traditional learning pipeline for resting-state fMRI (FC-SVM) [1]: 

the functional connectivity based on Pearson correlation was input to a linear support vector 

machine with L2 regularization, using nested cross-validation to choose the penalty 

hyperparameter. All implemented models were trained and tested on the augmented datasets. 

In addition, we compared published results for the same ABIDE datasets and AAL atlas, 

including another time-series modeling approach using hidden markov models (HMM) [11] 

and another neural network approach based on stacked autoencoders and deep transfer 

learning (DTL) [13].

To assess our implemented models, we used 10-fold cross-validation (CV), keeping all data 

from the same subject within the same partition (training, validation, or test). We measured 

model classification performance by computing the accuracy (ACC), true positive rate 

(TPR), true negative rate (TNR), and area under the receiver operating characteristic curve 

(AUC). Paired one-tailed t-tests were used to compare model performance over all folds and 

datasets.

For the generative results, with no ground truth for functional communities, we instead 

evaluated the robustness of extracted communities and compared a tensor decomposition 

approach for finding overlapping communities. For each sample, we calculated the 

correlation matrix of the R ROI time-series, then generated a tensor T with dimension 

R×R×S, where S is the number of samples. We then used non-negative PARAFAC [3] to 

decompose T ≈ ∑k = 1
K ak ○ bk ○ ck, where K is the number of communities, ak = bk ∈ ℝR

contains the membership weight of each ROI to community k, ck ∈ ℝS contains the 

membership weight of each sample to community k, and ○ is the vector outer product. 

Similar to our approach, we set K = 50 communities and use k-means clustering to assign 

hard ROI memberships to each community. Then for each approach, we computed the 

correlation of the membership weights and the Dice similarity coefficient (DSC) of hard 

membership assigments between community k in fold 1 and all communities in fold f ≠ 1. 

The robustness of community k in fold 1 compared to fold f was measured as the maximum 

correlation/DSC computed in fold f. We then assessed overall community robustness 

between fold 1 and f using the average correlation/DSC over all communities.

We also performed validation of the functional communities in the context of the ASD 

classification task using Neurosynth [15], which correlates over 14000 fMRI studies with 

1300 descriptors. The influence of a community for classification was denoted by the sum of 

absolute weights across all nodes in the second LSTM block for the discriminative task. A 

binary mask of the extracted ROIs for an important discriminative community was then 

input to Neurosynth to assess neurocognitive processes associated with ASD classification.
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3.3 Classification Results

Classification results for each ABIDE site are in Tables 1 and 2. Our LSTM-DG model 

produced the highest accuracy for 3 of the 4 sites and second highest for US, in which the 

LSTM-H variation of our model (generative path from hidden state) performed best. 

Furthermore, LSTM-DG produced the highest or nearly highest AUC for each site. Overall, 

our LSTM-DG consistently outperformed all non-generative implemented models (ACC p < 

0.05) and showed potential for improved classification compared to LSTM-H (ACC p = 

0.08). Moreover, LSTM-DG was the only method to significantly outperform LSTM-S 

(ACC p = 0.04, TNR p = 0.04), the original LSTM model for fMRI classification. The 

results demonstrate the effectiveness of our proposed LSTM-DG method to improve 

classification by jointly learning the generative fMRI time-series model.

3.4 Learned Functional Communities

Results for extracted communities by tensor-based community detection (CD, blue) and the 

proposed LSTM approach (orange) are plotted in Fig. 2. Our LSTM method produced 

consistently smaller communities with more uniform size compared to CD, with an average 

of 11 ROIs compared to 16. Furthermore, our LSTM approach consistently generated 

communities with higher correlation of membership weights and higher DSC of hard 

community assignments across CV folds for all sites, with a 15% increase in average 

correlation and 11% increase in average DSC. Thus, our proposed network produced smaller 

and more robust functional communities than CD, giving our model the potential for more 

reliable interpretation of further analyses on the functional communities.

The top 3 influential communities for the ASD classification of the largest dataset (NY) 

were extracted from the best CV fold and analyzed in Neurosynth. ASD is characterized by 

impaired social skills and communiciation; thus, we expect to find communities related to 

associated neurological functions. The top extracted community (Fig. 3, yellow) includes the 

temporal lobe and ventromedial prefrontal cortex, which are associated with social and 

language processes. The second community (Fig. 3, green) includes the ventromedial 

prefrontal cortex, hippocampus, and amygdala, which are associated with memory. The third 

community (Fig. 3, pink), containing the ventromedial prefrontal cortex and ventral 

striatum, is involved in reward processing and decision making. Dysfunction of all these 

brain regions and processes in ASD have previously been shown [12].

4 Conclusions

We have presented a novel RNN-based network for jointly learning a discriminative task and 

a generative model for fMRI time-series data. We achieved higher ASD classification 

performance on several datasets, demonstrating the advantage of joint learning. Finally, we 

showed that functional communities defined by the LSTM nodes provide robust 

representations of brain activity and facilitate interpretation of the ASD classification model. 

Understanding functional network organization will offer insights into brain disease as well 

as healthy cognition.
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Fig. 1: 
Architecture of our jointly discriminative and generative RNN: LSTM for functional 

communities (blue), discriminative path (orange), and generative path (green).
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Fig. 2: 
Size (left) and robustness of extracted functional communities across CV folds measured by 

correlation of membership weights (middle) and DSC of hard assignments (right). CD = 

tensor-based community detection, LSTM = proposed network.
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Fig. 3: 
Top 3 influential communities for ASD classification of the NY dataset and the top 

associated neurocognitive terms from Neurosynth.
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Table 1:

NY and UM Classification Results

Model

NY (184 subjects, 42.3% ASD) UM (143 subjects, 46.2% ASD)

Mean (Std) 
ACC (%)

Mean (Std) 
TPR (%)

Mean (Std) 
TNR (%) AUC Mean (Std) 

ACC (%)
Mean (Std) 
TPR (%)

Mean (Std) 
TNR (%) AUC

LSTM-S [7] 69.5 (11.0) 52.4 (26.5) 83.1 (12.0) 0.720 69.8 (11.4) 56.7 (24.2) 74.0 (25.3) 0.740

FC-SVM [1] 70.7 (8.2) 54.8 (21.5) 83.2 (11.8) 0.783 69.2 (12.0) 46.7 (18.9) 89.8 (12.8) 0.713

HMM [11] 70.6 (6.6) 61.6 66.7 0.712 73.4 (10.5) 68.5 76.9 0.738

DTL [13] - - - - 67.2 68.9 67.6 0.67

LSTM-D 70.7 (11.0) 48.9 (27.1) 86.7 (16.1) 0.746 67.0 (12.0) 52.9 (22.2) 78.6 (25.6) 0.738

LSTM-H 68.0 (7.7) 52.0 (19.8) 80.1 (10.1) 0.779 69.2 (11.4) 57.9 (14.5) 78.7 (18.1) 0.777

LSTM-DG 72.2 (14.7) 57.4 (25.5) 84.1 (12.2) 0.772 74.8 (10.0) 60.8 (12.8) 85.6 (14.5) 0.774
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Table 2:

US and UC Classification Results

Model

US (101 subjects, 57.4% ASD) UC (99 subjects, 54.6% ASD)

Mean (Std) 
ACC (%)

Mean (Std) 
TPR (%)

Mean (Std) 
TNR (%) AUC Mean (Std) 

ACC (%)
Mean (Std) 
TPR (%)

Mean (Std) 
TNR (%) AUC

LSTM-S [7] 67.5 (15.4) 79.8 (25.3) 56.2 (41.8) 0.659 62.7 (14.8) 74.4 (31.5) 51.5 (32.5) 0.691

FC-SVM [1] 67.3 (13.5) 86.2 (13.6) 43.5 (27.6) 0.721 61.7 (18.0) 73.3 (20.6) 47.7 (31.7) 0.624

DTL [13] 70.4 72.5 67.0 0.73 62.3 55.9 68.0 0.60

LSTM-D 64.7 (17.8) 75.3 (32.2) 61.8 (39.6) 0.682 63.6 (8.8) 71.8 (27.3) 51.3 (30.5) 0.662

LSTM-H 76.4 (13.9) 85.6 (18.0) 65.8 (22.2) 0.757 61.6 (11.4) 66.6 (14.5) 54.7 (18.1) 0.705

LSTM-DG 73.2 (14.7) 82.8 (25.5) 61.8 (12.2) 0.746 67.4 (10.0) 67.5 (12.8) 62.2 (14.5) 0.715
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