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Abstract. Recent successes in deep learning based deformable image
registration (DIR) methods have demonstrated that complex deforma-
tion can be learnt directly from data while reducing computation time
when compared to traditional methods. However, the reliance on fully lin-
ear convolutional layers imposes a uniform sampling of pixel/voxel loca-
tions which ultimately limits their performance. To address this problem,
we propose a novel approach of learning a continuous warp of the source
image. Here, the required deformation vector fields are obtained from
a concatenated linear and non-linear convolution layers and a learnable
bicubic Catmull-Rom spline resampler. This allows to compute smooth
deformation field and more accurate alignment compared to using only
linear convolutions and linear resampling. In addition, the continuous
warping technique penalizes disagreements that are due to topological
changes. Our experiments demonstrate that this approach manages to
capture large non-linear deformations and minimizes the propagation of
interpolation errors. While improving accuracy the method is computa-
tionally efficient. We present comparative results on a range of public 4D
CT lung (POPI) and brain datasets (CUMC12, MGH10).

1 Introduction

Image registration is required in many medical imaging applications - from multi-
modal data fusion to inter- and intra-patient comparisons. Rigid or affine regis-
tration methods can be used to align source image to its target image by com-
puting a simple transformation matrix, i.e., optimization of only few parameters.
However, such an alignment does not model changes due to organ deformation,
patient weight loss, or tumour shrinkage. In order to tackle these changes non-
rigid or deformable image registration (DIR) methods are advised. Traditional
DIR methods are usually mathematically complex to model and therefore re-
quire the optimization of a very larger number of parameters which makes them
computationally expensive. Recently, deep learning based methods have shown
tremendous success in tackling such complex problems in image registration.
This is mainly due to two reasons: 1) By learning the model parameters of the
neural network through optimizing a loss function directly from the data a wide
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range of image features are considered. 2) These methods make very efficient
use of hardware acceleration as a result they require significantly less time than
traditional methods.

Recently, supervised as well as unsupervised learning techniques for medical
image registration have been proposed. Supervised techniques [6] rely on ground
truth deformation vector fields (DVFs) computed by traditional methods. Here,
a neural network is only used as a regressor for approximating traditional meth-
ods. This restricts their learning process and such training requires a large num-
ber of DVFs which are both time consuming to generate and carries the risk
of mitigating unreliable deformations. On the other hand, unsupervised tech-
niques [7,1,10] can learn to predict DVFs without requiring ground truth defor-
mations. Linear convolutional neural networks (ConvNets) were used in [7,1,10].
Guha et al. [1] and Li et al. [7] used linear sampling techniques for upscaling the
obtained DVFs. We argue that such models do not approximate complex and
non-linear local deformations with a sufficient accuracy. These methods were
evaluated on brain datasets where local deformations are limited. While, [10]
proposed to use a B-spline as transformation model and interpolation method
for the predicted DVFs and presented results on more complex cardiac cine MRI
and lung datasets. However, in [10] only linear ConvNets were used. Despite of
good local support, B-splines can lead to larger interpolation errors as they do
not pass through data points (see Suppl. Mat. Section 1 for details).

With this paper, we introduce an unsupervised approach for deformable im-
age registration that is capable of learning complex deformations and is able
to compute smooth, accurate and plausible DVFs. We propose to: 1) Relax the
fixed geometric constrain imposed by traditional convolutional filters by adding
a series of deformable convolutional filters [3] combined with linear convolu-
tional filters which allows to capture complex features. 2) Apply a learnt bicubic
Catmull-Rom spline resampler to minimize error in DVF resampling, 3) Aggre-
gate large deformations using a multiple scale warping strategy. 4) Finally, to
impose further smoothness of the DVF using a L2-norm regularization. We show
that interpolation technique influence the learning phenomena. We also illustrate
deformable convolutions as presented in this work through experiments. We have
evaluated our model on publicly available lung CT and brain MRI datasets.

2 Method

As motivated, we now introduce the key elements to our Conv2Warp model
(each highlighted in Fig. 1), and describe our constrained loss function.

Linear and Deformable Convolutional Network (LD-ConvNet) LD-
ConvNet (blue block in Fig. 1) consists of 5 linear convolutions and 3 deformable
convolution layers. Each convolution layer is combined with a batch normaliza-
tion and ELU activation function. After the second convolution layer an average
pooling layer with downsampling factor of 0.5 is applied. Throughout we use
a sequential ConvNet of (input, output) channels as follows: (2, 64), (64, 64),



Fig. 1. Conv2Warp model. Three main components are presented as colored blocks:
Blue: linear and deformable convolution network (LD-ConvNet), Green: non-linear
DVF resampler network (NL-DVF-R) and Orange: continuous warping stage (CWS).

(64, 64), (64, 32), (32, 32), (32, 16), (16, 16), (16, 2) with kernel size 3 and stride
1. Two images Is (source) and It (target) are concatenated first and set as an
input to the first layer of the Conv2Warp model.

Non-linear DVF Resampler (NL-DVF-R) NL-DVF-R (green block in
Fig. 1) consists of a sequential bicubic Catmull-Rom spline resampler and con-
volutional filter for resampling the obtained DVF from the LD-ConvNet. Since,
this is integrated in our learning model, complex non-linear deformations learnt
by the LD-ConvNet are guaranteed to have smooth deformation fields and the
interpolation error is minimal.

Catmull-Rom spline consist of 4 basis functions with local support and are
C1 continuous and differentiable (see Suppl. Mat. Section 1). These properties
makes them smoother compared to standard linear interpolation techniques.
Qualitative comparison of Catmull-Rom spline with linear resampling technique
is provided in Fig. 3 of Suppl. Mat.

Comparison of Catmull-Rom spline with other spline-based resamplers (in-
cluding B-spline) is presented in Fig. 2. It can be observed that Catmull-Rom
spline has the lowest training losses for both lung and brain datasets.

Continuous Warping Stage (CWS) CWS (orange block in Fig. 1) warps
the deformation field obtained at l pyramid levels in a continuous fashion. Here
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Fig. 2. Training losses: Effect of interpolation methods on linear convolution model
(ConvNet) and our proposed non-linear Conv2Warp model. Conv2warp has better
convergence than the linear model for every interpolation technique, while the best
with the Catmull-Rom spline interpolation.

l = 4 for our 2D case with image size 256× 256 and l = 2 for our 3D case with
patch volume size 64 × 64 × 64. Note that l pyramids are constructed prior to
feeding images into the LD-ConvNet.

The CWS employs warping of the next level source image Isl−1 with the

computed DVF from previous coarse level LD-ConvNet, i.e., ul−1 = ud↑l . This
process is repeated until the final level, i.e., l = 0. At each level the losses
D (Isl , I

t
l ) between the warped image Isl−1 (x + ul−1) and the target are summed

and transferred to the final constrained loss function detailed in the Section 2.

Loss function A multi-modal normalized cross-correlation (NCC) metric is
used as data term D in our loss function. We propose to use a derived sum-
of-squared difference (SSD) which guarantees maximization of NCC metric [4]

and is written as D (Is, It) = 1
2N

∑(
|Is(x)−µs|√

σ2
s+ε

2
− |I

t(x)−µt|√
σ2
t+ε

2

)2

, with mean µ,

standard deviation σ, the total number of pixels N and ε = 10−3 (used to
avoid division by zero). For obtaining a smooth deformation vector field we
apply an L2-norm of the difference between the computed ud0 from the NL-

DVF-R block and u↑0 which is the previous upsampled input DVF to CWS
block (see Fig. 1). Losses computed during l pyramid levels in our CWS block∑1
l−1 Dk are aggregated to the final loss. The resulting equation for the backward

propagation is: L = D (Is, It) + λ
[
‖ ud0 − u↑0 ‖2

]0.25
0

+
∑1
l−1 Dk, where λ is the

trade-off between the regularization and the data-term. In our experiments it
is set to 0.001. We restrict the regularization to the interval [0, 0.25] to prevent
over smoothing problem during training. Omitting this constraints results in
failures which are documented in Fig. 2 of Suppl. Mat. (see plot for Conv2Warp-
FullReg). The loss saturates after 6000 iterations. However, regularised models



4D-CT
Methods

Pre-align. Demons ANTS-SyN SE ConvNet Conv2Warp

00-50 0.83(0.76) 0.87(0.83) 0.87(0.82) 0.89(0.85) 0.87(0.82) 0.89(0.83)
00-70 0.86(0.79) 0.90(0.85) 0.89(0.84) 0.92(0.88) 0.90(0.84) 0.91(0.85)
10-50 0.82(0.75) 0.86(0.82) 0.86(0.81) 0.88(0.85) 0.87(0.81) 0.88(0.83)
10-70 0.85(0.78) 0.88(0.83) 0.87(0.82) 0.88(0.84) 0.89(0.83) 0.90(0.84)
20-50 0.84(0.77) 0.87(0.83) 0.86(0.82) 0.91(0.86) 0.87(0.81) 0.89(0.85)
20-70 0.86(0.79) 0.89(0.84) 0.88(0.83) 0.88(0.84) 0.89(0.83) 0.90(0.84)
30-50 0.87(0.82) 0.90(0.86) 0.89(0.85) 0.91(0.87) 0.88(0.83) 0.90(0.86)

Mean 0.84(0.78) 0.88(0.83) 0.87(0.82) 0.90(0.85) 0.88(0.82) 0.90(0.84)
t̄ (in s.) - 23.51 216.45 416.78 2.94 2.94

Table 1. Evaluation on lung 4D CT dataset (POPI [9]). Dice(Jaccard) coeffi-
cients for 7 different volume pairs with larger inhalation and exhalation cyles. Grid-
parameter search was done for all methods and only best performance is reported.

with the interval continue to minimise the loss function. Our constrained loss is
optimized using Adam optimizer with learning rate 10−3.

3 Experiments and Results

3.1 Datasets and training

4D CT. DIR-LAB [2] thoracic image dataset for DIR that inlcudes inspiratory
and expiratory breath-hold CT image pairs were used for training. Although
large permutations are possible, only breathing cycles 00-50, 10-80 and 30-90
were considered from 10 different sets (a total of 120 volumes). As a consequence
we avoid an imbalance in the training dataset as most of the breathing cycles did
not present strong deformations. For testing the POPI [9] lung dataset was used.
The provided segmentation for air, body and lungs were used for evaluation.
MRI. The LBPA40 [8] dataset were used to train the model. We performed a
random combination of these brain pairs and used nearly 300 volumes for our
training. We have used MGH10 and CUMC12 [5] datasets for which masks are
available for evaluation. 300 epochs with batch size of 4 were used for training
performed on a 16GB NVIDIA Tesla P100 for nearly 48 hours.

3.2 Registration of 4D CT data

Conv2Warp has been evaluated by comparing it to the DIR state-of-the-methods.
We also provide results where we restrict the convolution blocks in the Conv2Warp
model to linear convolution only (ConvNet). For both these architectures, we
will compare them only for Catmull-Rom spline based interpolation as it out-
performed other spline techniques in our experiments. Seven pairs of different
breathing cycles of 4D-CT data [9], each with 141 slices, where improvement of
DIR methods compared to pre-alignment were significant are shown in Table 1.



Methods
Dataset Avg.

MGH10 CUMC12 time
µdice µjaccard µdice µjaccard t̄

Rigid 0.92 ± 0.011 0.86 ± 0.019 0.90 ± 0.030 0.82 ± 0.050 -

SimpleElastix (SE) 0.95 ± 0.003 0.90 ± 0.005 0.95 ± 0.002 0.91 ± 0.002 1008.2
ANTS (SyN-CC) 0.94 ± 0.007 0.90 ± 0.011 0.95 ± 0.010 0.90 ± 0.017 246.4

ConvNet 0.93 ± 0.008 0.88 ± 0.014 0.95 ±0.007 0.91 ± 0.012 2.9
Conv2Warp 0.95 ± 0.007 0.90 ± 0.012 0.97± 0.005 0.93 ± 0.008 2.9

Table 2. Evaluation on T1-weighted MRI datasets. Mean Dice and Jaccard
coefficients for two datasets with the state-of-the-art DIR methods and Conv2Warp
(checkpoints trained on LBPA40 dataset) are shown. Only rigid registration was per-
formed for pre-alignment prior to applying deformable registration.

Is It Is → It Is(x + u) Is(x + ureg) | u | | ureg |
overlay +It overlay +It overlay

Fig. 3. Visual validation of proposed Conv2warp method without (λ = 0 )
and with regularization (λ = 0.001 ) in our loss function on POPI dataset. Overlay
images represents source or warped images in magenta and target image in green.
Red rectangles in overlay images with Is(x + u) show unrestricted flow of pixels when
no regularization is used. Smoother deformation fields are obtained with regularized
Conv2warp. Brighter pixels in magnitude images on left represent large displacements.

While the accuracy of our method measured by Dice (.90) and Jaccaard coeffi-
cient (.84) is similar to the rigorous simpleElastix (SE1), the run time is reduced
by a factor of 141. Conv2Warp outperforms all other state-of-the art methods
and ConvNet for almost all considered pairs. The test time on CPU is nearly
2.94 s which is multiple-folds lower than conventional DIR methods. Our model
is light weight with inference time on a GPU of less than 1 s.

3.3 Registration of T1 MRI data

T1-weighted MRI scans for 9 volume pairs of MGH10 and 11 volume pairs of
CUMC12 [5] where each image from different volumes were registered to the
first volume data were also used for evaluation. The weights trained on LBPA [8]

1 http://simpleelastix.github.io



Fig. 4. Visual validation of proposed Conv2Warp method on brain dataset.
1st column: Target image with source mask, 2nd column: target image with deformed
(transformed) mask, 3rd column: Target image with target mask, and last column:
magnitude of predicted deformation field. Grey matter (GM) and white-matter (WM)
areas are marked by green and magenta borders and yellow borders, respectively.

dataset were used in this case. In Table 2 Conv2Warp have µdice (mean dice)
and µjaccard (mean Jaccard) of 0.95 and 0.90, respectively for MGH10 dataset
(same as for SE), and 0.97 and 0.93, respectively for CUMC12 dataset (higher
than SE). Conv2Warp has higher µdice and µjaccard for both datasets compared
to ANTS (SyN-CC) and ConvNet. When compared with speed Conv2Warp is
computationally the fastest among all other conventional DIR methods.

3.4 Visual validation

In Fig. 3 Conv2Warp without (λ = 0) regularization and with (λ = 0.001) regu-
larization are shown in 4th and 5th columns respectively and their corresponding
DVF magnitudes in 6th and 7th columns, respectively. It can be observed that
the unconstrained loss function results in some unrealistic deformations (red rect-
angular regions in 4th column) while a more realistic deformations are visible for
the constrained loss proposed in Conv2Warp (5th column). A smooth deforma-
tion can be seen in the magnitude image of the DVF | ureg | (7th column). Colour
overlay images show a large improvement in the alignment of source images Is

with the target images It (3rd column) with Conv2Warp method (5th column).
Fig. 4 shows the results on T1 MRI test datasets which were first rigidly aligned
to MNIspace and then co-registered using Conv2Warp. It can be observed that
Conv2Warp handles different magnitudes of non-linear deformations.



4 Conclusion

We have proposed a novel end-to-end convolutional neural network that consists
of a sequential linear and deformable convolutions along with a learnt non-linear
sampler. To handle wide range of non-linear deformations between source and
target data pairs deformations are concurred by the continuous warping strategy.
Our experimental results demonstrate that our proposed model outperforms
most of the traditional methods and has very low computational complexity.
When compared to the existing linear deep learning models such as ConvNets,
Conv2Warp produces more accurate deformation fields. Additional details and
evaluations are available in the supplementary material.
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