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Abstract. By their very nature microscopy images of cells and tissues
consist of a limited number of object types or components. In contrast
to most natural scenes, the composition is known a priori. Decomposing
biological images into semantically meaningful objects and layers is the
aim of this paper. Building on recent approaches to image de-noising we
present a framework that achieves state-of-the-art segmentation results
requiring little or no manual annotations. Here, synthetic images gen-
erated by adding cell crops are sufficient to train the model. Extensive
experiments on cellular images, a histology data set, and small animal
videos demonstrate that our approach generalizes to a broad range of
experimental settings. As the proposed methodology does not require
densely labelled training images and is capable of resolving the partially
overlapping objects it holds the promise of being of use in a number of
different applications.
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1 Introduction

In contrast to natural images, the scene composition in microscopy images is typ-
ically known. The image acquisition is done in a controlled environment where
the objects of interest are highlighted by physical methods such as optical con-
trast, staining or fluorescence labelling. At the same time, noise, low contrast
and diverse imaging artifacts can make image analysis challenging. It is not un-
common to deal with overcrowded scenes or objects with complex morphology.
Additionally, many typical assumptions of natural scenes do not apply to histo-
logical images, i.e. objects can be rotated in any direction, they can be out of
plane or have different appearance depending on the sample preparation.

Deep learning has been successfully adopted for microscopy image analysis,
in particular for segmentation and localization tasks [7,8], however its adoption is
limited by the need for large manually annotated datasets. The annotation of mi-
croscopy images is demanding due to the large number of individuals and the het-
erogeneity of their shapes. Additionally, the object identification in microscopy
data typically requires a level of expertise that cannot be easily outsourced.
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Deep learning has enabled a number of new approaches to image denoising and
restoration, a type of inverse problem that aims to recover an image x from its
degraded version f(x). The general training procedure requires the collection of
hundredths of pairs of noisy and cleaned images. The acquisition of clean targets
typically requires altering the imaging conditions during acquisition [9] making
it quite demanding or in some situations nonfeasible. This limitation was par-
tially solved, with Noise2Noise [3], where Lehtinen et al. demonstrated that it is
possible to train a denoising network without the need of clean targets if noisy
pairs of the same scene are given. The basic idea is that if we train a network
using pairs of noisy images such as (s + n, s + n′) where s is the same signal,
and n and n′ are the independently drawn noise, the network converges to a
representation that cancels out the noise component. Nonetheless, the image
restoration methods do not include any semantic information, i.e. they are not
capable of separating the signal coming from the objects of interest from the
signal of other objects.

In this paper, we expand on the idea of Noise2Noise to filter semantically
meaningful information on microscopy images. We show that we can train a net-
work to remove objects on training pairs where the objects change position and
the scene remains static. This approach can be used to learn to identify moving
objects from videos without any manual labelling. Additionally, we demonstrate
that if we train a network on pairs of images where the signal from the objects
of interest remains the same while the rest of the scene changes, the network
learns to only retain the objects of interest. The most challenging part of this
second approach is to get the required training data. For this, we use the fact
that the composition of certain microscopy images is known a priori to syn-
thesize the training set using a very simple method. We show that even if the
synthetic images are far from realistic, a network trained on them is capable of
producing high quality outputs. Contrary to the pixel-labelled images typically
used in semantic segmentation, our semantic filtering has the advantage of re-
taining textural information and of resolving overlapping objects from different
classes. Additionally its training does not need dense image annotations, but
rather requires representative exemplars that can be extracted with traditional
image segmentation methods.

In Section 2, we present how we expand the Noise2Noise idea to semantically
filter microscopy images and describe our synthetic image generation model.
In Section 3 we apply our methodology to different experimental settings. In
Section 3.1 we use videos from C. elegans wild isolates to remove the animals
from the background by training directly raw video data. In Section 3.2 we use
data from fluorescent microglia cells to demonstrate that our approach is capable
of removing out of focus objects while retaining complex cell morphologies. We
then apply our method on two public datasets taken from the Broad Bioimage
Benchmark Collection [5]: BBBC026 [6] (Section 3.3) where we demostrate that
our method can resolve overlapped shapes, and BBBC042 [8] (Section 3.4) where
we show the same ideas can be applied to histological images. We provide a
quantitative evaluation of the results.
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Fig. 1. Illustration of the training procedure. Left, the method consists in try to
make a network learn the mapping between pairs of images where the only thing in
common is the target objects. Once trained, the network is then capable of outputing
only the signal from the objects of interest and smoothing out the rest. Right, examples
of synthetic training pairs for the different datasets. For illustration purposes the fixed
parts between pair of images that correspond to the target objects are coloured in
green.

2 Method

We are interested in extracting data from biological samples which contain one
or more entities and are set up to study phenotypical differences within a specific
class or interactions between them. The object categories are referred to as Oi.
For the purpose of this paper, two objects categories are considered among all
Oi, the target category Ot and the rest Ou. We will denote the background
signal with b and the image layer formed only by sparsely located objects from
Oi with `i. Therefore an image can be modeled as x = f(`t, `u, b). The task of
interest is, given x, to extract the layer `t that contains only the pixel intensities
coming from the objects of interest.

2.1 Training Model

The major insight in Lehtinen et al. [3] is that when a neural network is used to
map one images to another, the learned representation is an average of all the
plausible explanations for a given training data. In some cases, this can lead to
unwanted artifacts like blurry edges. Nonetheless, if the network is trained on
pairs of images with different noise realizations (Noise2Noise), e.g. same scene
with different Gaussian noise, the learned representation is capable of cancel out
the noise just as well as if it had been trained using cleaned targets.

Expanding on this idea, we can use pairs of images where the layer `t remains
the same, while we change a combination of the layers `u and b. If the the objects
in `u are randomly located, the network learns to smooth the background objects
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out while enhancing the target objects. Conversely, we can learn to remove `t

if we train on pairs where `u and b remains static while `t changes between
images. As we will see in section 3.1 this later case occurs naturally on videos
with moving targets and a fixed camera. For the rest of the experiments we rely
on synthetic image pairs generated as explained below. For simplicity, in all our
experiments we used a U-Net architecture with the same architecture as the one
used by Lehtinen et al. [3]. However, it is worth to remark that the approach is
not limited to a specific network architecture.

2.2 Synthetic Image Generation

We use a simple model to create synthetic images where we assume that the
image formation is additive x = `t + `u + b. Additionally, we assume that it is
possible to obtain sample crops of isolated individuals oik ∈ Oi and patches of the
background b where any pixel belonging to any Oi has been set to zero. We can
then create `t and `u by randomly placing oik from their respective classes, and b
from the patches. Partial overlaps between the objects is allowed (up to 50-90%
of the placed object) but we observed that complete overlaps can be detrimental
leading to artifacts. Each crop is augmented using random rotations, flips, and
resizes, as well as multiplying by a random constant and substracting a random
constant. Additionally, the zero parts of the patch background are replaced by
a random constant.

The required crops can be extracted using traditional segmentation algo-
rithms plus a manual or automatic filtering of representative examples. The
main requirement is that the crops are exemplars of a given class. Examples of
the generated training pairs are shown in Fig. 1, and examples of the input crops
are shown Fig. S1.

3 Applications

3.1 Learning morphology from moving objects.

Videos taken using a static camera where only the objects of interest are moving
are a natural realization of the data required to train our semantic filtering
model. In this case, we can use pairs of frames separated by a fixed time lag to
train a network capable of removing the target objects on single frames. This
occurs because the equivalent of minimizing the L1 loss on pairs of samples with
random noise is the median [3]. The network effectively learns to calculate the
equivalent of a median projection over a video. Therefore, as long as the median
projection over a video at a given time lag results in a cleaned background, we can
used those frames in our training set. The trained network output can be then
subtracted from the original image in order to recover the pixels corresponding
to the target objects.

We tested this approach on the set of videos of C. elegans wild isolates [2]. We
used 279 videos for training and 32 for testing. From each video we extracted
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Output - Input Median ProjectionOutputInput

Fig. 2. Using consecutive frames of movies of moving objects makes possible
to train a model to remove the objects in static images. The output can
be subtracted from input to recover the target objects. By comparison, the median
projection along the video will fail to remove all the worms in cases where the animals
motility is impaired.

OutputRaw Image Log-Transform

Fig. 3. The signal from the out of focus cells is removed while preserving
the complex morphology of the microglia cells.

five 2048x2048 frames spaced every three minutes. We trained the model on
patches of 256x256 pixels on pairs of consecutive frames. To validate the results
we used as ground truth the original segmentation [2]. The localization scores
are precision (P) 0.995, recall (R) 0.999, F1-score (F1) 0.997, while the mean
IoU for the whole image is 0.850.

It is worth noting that in the training set our model is rather unnecessary, it
will be much easier to calculate the median projection over each video. However,
in cases were the motility of the worms is limited during inference, like in the case
of mutations or drugs, the median projection will contain pixel that correspond
to worms. We shown an example of this in Fig. 3.1 on a video of the strain unc-51
that has a mutation that severely impairs the worms mobility.

3.2 Removing Out of Focus Cells on Microglia Cultures

The dataset consist of images of a co-culture of microglia cells and neurons. The
only fluorescent cells in the images are the microglia, however, the intensity of
the cell processes is much dimmer than their bodies. In order to resolve better the
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cell morphology we first took the log-transform of the raw images. This creates
the problem of increasing the signal coming from out of focus cells. Our model is
capable of cleaning the out of focus cells while retaining almost completely the
cell morphology. Example of the model outputs are presented in Fig. 3.

3.3 Segmentation of co-cultures in microscopy fluorescence images.

Input Output Hepatocytes Output Fibroblasts

Fig. 4. The model is capable of resolve overlapping cells on co-cultures of
hepatocyte and fibroblasts. We display the outputs of two different models trained
using either the hepatocytes or the fibroblast as the target class. The dots in the input
image show the dataset annotations, fibroblast in red and hepatocytes in cyan. In this
region there are four heavily overlap hepatocytes (green arrows) that were resolved by
our model but are not labeled as such in the dataset.

The BBBC026 [6] dataset consists of images of co-cultures of hepatocytes
and fibroblast taken using epifluorescence. The dataset has five hand-annotated
ground truth images where each cell is labeled either as hepatocyte, fibroblast
or debris. The annotations consist of a single pixel inside each object coloured
according to its class. We used this information to extract the crops needed for
our image synthesis model. We train our model using 5-fold cross validation,
training with four images and using the remaining one for testing. We repeat
the procedure two separate times using either the hepatocytes or the fibroblasts
as the target class. The real ground truth for our method would be images with
only the hepatocytes or fibroblast in separate channels. Since we do not have this
data we decide to validate our results with the localization results reported in the
dataset source paper [6]. Our results are for the hepatocytes (P=0.81, R=0.92,
F1=0.86) compared with (P=0.94, R=0.70, F1=0.80), and for the fibroblasts
(P=0.95, R=0.96, F1=0.95) compared with (P=0.86, R=0.98, F1=0.92). For
both classes, we obtain a moderate increase in the F1-score. Interestingly, we
observe that in the case of hepatocytes, the decrease of precision can be explained
by apparent false positives created by overlapped cells that were not labelled in
the original dataset but our network was capable of resolving (Fig. 4).

Finally, to further corroborate our results we use the unlabelled images in
the BBBC026. This images were taken using two different hepatocytes concen-
trations while keeping the same number of fibroblasts. Compared to the results
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reported in Logan et al we observe a smaller p-value among the two samples
(3.1 · 10−10 vs 3.3 · 10−6), and a larger Z-factor (0.28 vs 0.16) that indicates a
higher statistical power to identify between different hepatocytes concentrations.

3.4 Segmentation on histological images.
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Fig. 5. Performance on histological images of astrocytes cells (BBBC042).
Left, our model has a performance close to the state of the art models on object
detection, and shows only a small reduction of performance as the number of training
images is reduced. Right, the output of our model highlights the cell morphology and
could help an expert annotator to localize missing targets. In the displayed region,
there are only three labeled cell (red boxes), however our model predicts two extra
structures (blue arrows) that show a similar morphology to the cells.

The BBBC042 [8] dataset consists of histological images from different rat
brain regions stained with antibodies specific to astrocytes. The dataset is par-
ticularly challenging since the images have low contrast, diverse cell morphol-
ogy and a large number of stained non-specific structures. The dataset consists
of 1118 images with the location of around 15000 astrocytes marked by their
bounding box. We use 1000 images for training, 50 for validation and the rest
for testing. To adapt this set into our image synthesis model, we first convert
each RGB image to gray scale and calculate its complement so the background
is dark and the foreground bright.

We validate the quality of our results using the localization task. The network
outputs are binarized using Otsu thresholding and the bounding box calculate
for each connected component removing any blob with less that 300 pixels. The
assignment to the true labels is done as described by Suleymanova et. al [8]. We
compare our results with the state of the art object detection models: Faster-
RCNN [1] and Retinanet [4]. We trained FasterRCNN using random crops, and
horizontal and vertical flips as augmentations, however the augmentations cre-
ate instability in the training for Retinanet. The results are: semantic filtering
(P=0.66, R=0.78, 0.72), FasterRCNN with augmentations (P=0.73, R=0.82,
F1=0.77), FasterRCNN without augmentations (P=0.80, R=0.68, F1=0.73) and
Retinanet (P=0.81, R=0.67, F1=0.74). Additionally, we test how the perfor-
mance our model changes as less training data is used. The results are shown in
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Fig. 5 Right. When using 100 or less images, our model performance is the same
as the top model, FasterRCNN with augmentations.

The lower performance of our model when using all data could be explained
by the likely presence of real cells in the background. As reported in the dataset
paper [8], it is common that experts do not coincide in their annotations. The
authors report F1 scores between 0.77-0.82 between data labelled by two differ-
ent experimenters. As consequence it is likely that the dataset labels have an
important number of false negatives. Since our network is not directly trained on
the cell localization but rather in cleaning the background from the signal, noisy
labels will affect our segmentation mask and therefore our ability to detect cells
accurately. At the same time, this can be a one major advantage of our model
with respect to a network designed to only output the bounding boxes, since the
network output will return a clearer outlook of the cell morphology. This output
can be used to highlight to the annotator possible missing cells (Fig. 5 left).

4 Conclusions

Simplifying the training data acquisition is of great importance for real world
settings such as high-content imaging. Our experiments demonstrate that the
proposed approach can be applied to time-lapse data completely eliminating the
need for any annotation. Additionally, as a result of decomposing the image
into separate layers we can effectively study cells with very complex morphology
without ever providing accurate dense annotations. Our work demonstrates that
synthetically generated images are sufficient for training semantically meaningful
mappings. We consider that our work is of significance for a number of concrete
applications in cell and tissue imaging. Going forward we will explore the ap-
plication of our image synthesis paradigm in combination of different network
architectures for specific tasks such as instance segmentation or pose detection.
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S1 Training Data Extraction.

Microglia. We generated the training data by applying a local thresholding.
The connected components larger than 104 pixels are considered foreground
while the rest of the image is considered background. The data for b is formed
by the original images but with the foreground pixels set to zero. Each crop is
scored by applying a Laplacian of a Gaussian filter and calculating the mean of
the absolute value of the pixels inside each crop. If the score value is below a
lower bound threshold, the crop is likely to contain only out of focus cells and
will form part of Ou, if it is above an upper bound threshold it should contain
only cells in focus and will from part of Ot, any value in between is discarded.

BBBC026 To obtain the training data we first created a foreground and back-
ground mask using an Otsu thresholding on the log-transform of the original
images. We then cropped the images according to the foreground connected
components. A crop was included into Ot if it only has cells labeled as hepatho-
cytes, in Ou if it only has fibroblast, or discarded if it has more than one label
type. We kept 291 crops of only fibroblast and 124 crops of only hepathocytes.
For b we set to zero the pixels labeled as foreground in the original image.

BBBC042 In order to obtain the training data, we first converted each RGB
to gray scale and calculate its complement so the background is dark and the
foreground light. For Ot, we cropped each bounding box and applied an Otsu
thresholding. We only kept one connected component per crop and set the rest
of the pixels to zero. For Ou and b we first set to zero the pixels inside the labeled
regions. For Ou, we randomly selected square crops with a size between 64 to
192 pixels and apply the same procedure for Ot. For b we use local thresholding
and set to zero all the foreground pixels.
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Fig. S1. Examples of the crops used to synthetize the images.
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