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Florian Dubost1?, Max Dünnwald2,3?, Denver Huff2, Vincent Scheumann2,
Frank Schreiber2, Meike Vernooij1,5, Wiro Niessen1,6, Martin Skalej4, Stefanie

Schreiber2, Steffen Oeltze-Jafra2,7??, and Marleen de Bruijne1,8??

1 Department of Radiology & Nuclear Medicine, Erasmus MC, the Netherlands
2 Department of Neurology, Otto-von-Guericke University Magdeburg, Germany

3 Faculty of Computer Science, Otto-von-Guericke University Magdeburg, Germany
4 Department of Neuroradiology, Otto-von-Guericke University Magdeburg, Germany

5 Department of Epidemiology, Erasmus MC, the Netherlands
6 Dept. of Imaging Physics, Faculty of Applied Science, TU Delft, the Netherlands

7 Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
8 Department of Computer Science, University of Copenhagen, Denmark

Abstract. Enlarged perivascular spaces (PVS) are structural brain changes
visible in MRI, and are a marker of cerebral small vessel disease. Most
studies use time-consuming and subjective visual scoring to assess these
structures. Recently, automated methods to quantify enlarged perivas-
cular spaces have been proposed. Most of these methods have been eval-
uated only in high resolution scans acquired in controlled research set-
tings. We evaluate and compare two recently published automated meth-
ods for the quantification of enlarged perivascular spaces in 76 clinical
scans acquired from 9 different scanners. Both methods are neural net-
works trained on high resolution research scans and are applied without
fine-tuning the networks parameters. By adapting the preprocessing of
clinical scans, regions of interest similar to those computed from research
scans can be processed. The first method estimates only the number of
PVS, while the second method estimates simultaneously also a high res-
olution attention map that can be used to detect and segment PVS.
The Pearson correlations between visual and automated scores of en-
larged perivascular spaces were higher with the second method. With
this method, in the centrum semiovale, the correlation was similar to the
inter-rater agreement, and also similar to the performance in high res-
olution research scans. Results were slightly lower than the inter-rater
agreement for the hippocampi, and noticeably lower in the basal gan-
glia. By computing attention maps, we show that the neural networks
focus on the enlarged perivascular spaces. Assessing the burden of said
structures in the centrum semiovale with the automated scores reached
a satisfying performance, could be implemented in the clinic and, e.g.,
help predict the bleeding risk related to cerebral amyloid angiopathy.
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1 Introduction

Enlarged perivascular spaces (PVS) are structural brain changes visible on MRI.
They can be identified as thin hyperintense tubular structures on T2-weighted
MRI scans. PVS are increasingly thought to reflect the presence of cerebral
small vessel disease, which represents a leading cause of cognitive decline and
functional loss in elderly patients. In most studies, enlarged perivascular spaces
are quantified using visual scores that either classify the burden of PVS in sev-
eral categories [8], or count PVS [1]. These quantification methods are tedious
and observer-dependent. Recently, several methods have been proposed to auto-
matically quantify PVS burden [2, 4–6, 10, 13]. None of these methods have been
evaluated in clinical scans, which present multiple challenges for the quantifi-
cation of PVS. While in research studies, the scanning is highly standardized
(same machine, same protocol, same scanning parameters, same investigators,
etc.) to yield comparable results, this is not the case in clinical routine. The
lower resolution of clinical scans also results in the computation of less accurate
shape features, the most discriminative feature for the detection of PVS. More-
over, other MRI markers related to cerebral small vessel disease – such as white
matter hyperintensities – are more prevalent in clinical scans than in popula-
tion studies [5, 6, 4, 2] and could be confused with PVS because of their similar
appearance.

In most studies, PVS are quantified separately in one or several clinically and
epidemiologically relevant brain regions: midbrain, hippocampi, thalamus, basal
ganglia, and centrum semiovale. In PVS research, the centrum semiovale is the
most studied region, as PVS burden there has been most strongly associated to
potential determinants of PVS and outcomes thereof. The centrum semiovale is
also often the region with highest inter-observer agreement in the visual scoring
of PVS [1]. In this study, we quantified PVS in the hippocampi, basal ganglia,
and centrum semiovale.

Zhang et al. [13] automatically quantified PVS on 7T MRI scans. Boespflug
et al. [2] proposed an automated quantification method combining image in-
tensities and morphologic features from several MRI sequences. They evaluated
their method in the centrum semiovale in research scans. Sudre et al. [10] pro-
posed to use recurrent neural networks to detect PVS and lacunar infarcts in 16
subjects of a longitudinal study investigating the relationship between cardio-
vascular risk factors and brain health. Van Wijnen et al. [11] regressed intensity
distance maps of PVS in the centrum semiovale using neural networks. Recently,
Dubost et al. [4] proposed to quantify PVS burden in four brain regions – mid-
brain, hippocampi, basal ganglia, and centrum semiovale – with neural network
regressors trained with image level labels: the count of PVS in the target brain
region. In research scans, the authors showed that they could reach a correlation
between visual scores and automated scores similar to that of the inter-observer
agreement in each region. They also found that associations between 20 deter-
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minants of PVS and visual PVS scores, and between the same determinants and
automated PVS scores, were similar. The same authors [5] proposed to use a
more advanced model (GP-Unet) for weakly supervised detection of enlarged
perivascular spaces. This method estimates simultaneously the number of PVS
and a high resolution attention map that can be used to detect and segment
PVS. We decided to study the methods of Dubost et al. [4, 5] as the validation
experiments with associations with clinical variables already brought them one
step ahead of other methods for the application to clinical practice.

In this article, we applied and compared the two methods of Dubost et al. [4,
5] on 76 clincial MRI scans with a varying, low resolution acquired in the clinical
routine of a hospital using nine different scanners and different protocols, while
using models weights learned from high-resolution population study MRI scans
acquired at another hospital in a highly controlled and standardized setting using
a single scanner and protocol. The networks were not fine-tuned to the clinical
data. For preprocessing, we used FSL packages instead of FreeSurfer parcellations
of [4, 5] to segment the regions of interest. Finally, we show examples of attention
maps of GP-Unet.

2 Datasets

Training data. The training data consists of 1600 T2-weighted MRI scans from
1600 elderly participants in a population study: the Rotterdam Study [7]. Scans
were acquired on a single 1.5T GE scanner, in a highly controlled and stan-
dardized setting. The scan resolution was 0.5x0.5x0.8 mm3. PVS were visually
scored by a single rater in all scans in the hippocampi, basal ganglia and centrum
semiovale, following the guidelines of Adams et al. [1].

Evaluation data. The MRI data used for evaluation were gathered retrospec-
tively from the Picture Archiving and Communication System (PACS) of Uni-
versity Hospital Magdeburg. MRI scans with visible signs of cerebral small vessel
disease were selected. All selected patients had cerebral microangiopathy, and
were diagnosed with at least one of the following: ischemic (i.e. lacunar) stroke or
transient ischemic attack, spontaneous intracerebral hemorrhage, dementia (i.e.
Alzheimers disease or vascular dementia), and epileptic seizures. Initially, 100
acquisitions from 100 different patients were collected. 24 Scans were excluded
from the experiments either because FSL segmentation of the brain structures

Table 1. Characteristics of the clinical dataset (minimum, maximum, mean and stan-
dard deviation)

min max mean std

Patient age (years) 35 89 71.39 9.32
In-plane (axial) resolution (mm2) 0.39 0.68 0.45 0.04
Resolution in z (mm) 3.30 7 4.94 0.89
Spacing between slices (mm) 0.60 6.60 4.73 1.04
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failed or because scans could not be rated visually, e.g. due to insufficient im-
age quality caused by motion artifacts or presence of other pathologies such as
extremely large lesions. This leaves a total of 76 scans for the study. Since the
acquisitions have been obtained during the clinical routine, they present a con-
siderable variance with respect to various image properties such as artifacts or
image resolution. T1-weighted and T2-weighted MRI scans have been acquired
with 9 different scanners. Two of these scanners, a 3T and a 1.5T from Philips,
make up 66 of the 76 images. In total, there are three 3T-, four 1.5T- and two
1T-scanners. Three of them were Siemens (two 3T, one 1.5T), the rest were
Philips machines. The time frame in which the data was acquired is almost 15
years and ranges from August 2004 until March 2019. The majority of the scans
(43) has been acquired within the last 5 years of this period. The number of male
and female patients was 46 and 30, respectively. Table 1 provides additional in-
formation about the data set. PVS were scored visually in the hippocampi, basal
ganglia and centrum semiovale following the guidelines of Adams et al. [1]. Two
raters scored PVS, the inter-rater agreement is reported in Table 2.

3 Methods

The target brain regions (hippocampi, basal ganglia, and centrum semiovale) are
first segmented, masked and cropped. The result is then processed by trained
convolutional neural networks that predict the count of PVS in each region. The
neural networks were trained with high resolution MRI scans of a population
study, but were used to predict PVS count in routine clinical scans of a hospital.
The study was approved by the local ethics committee (No 28/16).

3.1 Preprocessing

To match the resolution of scans in the training set, all clinical scans were linearly
interpolated to a resolution of 0.5x0.5x0.8 mm3.

Dubost et al. [4] used FreeSurfer parcellations to segment brain regions.
FreeSurfer brain parcellation lasts usually several hours, which may prevent its
use in clinical routine. In this study, we used instead FIRST and FAST algo-
rithms from the FSL package [9] to segment brain regions from the T1 sequence
in a matter of minutes. FIRST could compute segmentation of the basal ganglia
and hippocampi. FAST was used to segment the white matter for the centrum
semiovale region. Dubost et al. [4] also evaluated their method in the midbrain.
As midbrain segmentation is not implemented in FSL, this region was excluded
from the study. The T1 sequence was then rigidly registered to the T2 sequence
using FSL FLIRT, and the segmentation labels were propagated from the T1
space to the T2 space.

Following the guidelines of Adams et al. [1] for visual scoring of PVS, Dubost
et al. [4] quantified PVS in the centrum semiovale in the neighborhood of the slice
located 1 cm above the top of the lateral ventricles. As FSL does not compute
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Fig. 1. Comparison between visual and automated PVS scores. The different
colors represent different scanners. The visual PVS scores of the first rater (R1), on the
x-axis, are compared with the predictions of GP-Unet, CNN, and with the visual scores
of the second rater (R2), on the y-axis. In the right column we plotted the automated
PVS scores of GP-Unet versus those of CNN.

ventricle segmentation, we used instead the segmentation of the basal ganglia as
approximation, and selected the slice 1 cm above the top of the caudate nucleus.

The following preprocessing steps were computed exactly as described by
Dubost et al. [4]. Namely, the segmentation masks were dilated, convolved with
a gaussian kernel to smooth the border of the mask, and multiplied pixelwise with
the T2 intensities. The masked regions were then cropped, normalized between
0 and 1 using the minimum and maximum intensity values in the masked region,
and given as input to the neural networks.

3.2 Neural Networks

The preprocessed images were given as input to two different types of neural
networks proposed for automated PVS quantification: (1) a neural network with
four convolutional layers and a max-pooling layer which outputs the number of
PVS in a region [4] and that we call CNN, and (2) GP-Unet, a similar neural
network proposed by the same authors [5], in which the downsampling path is
followed by an upsampling path to enable weakly supervised detection of PVS.
Networks of both methods were trained with only image-level labels.

Attention maps of GP-Unet were computed to visualize the focus of the
networks using a linear combination of the feature maps of the last convolutional
layer, as described by Dubost et al. [5].

4 Results and Discussion

Table 2 shows the Pearson correlation, and Table 3 the mean absolute error,
between visual and automated PVS scores for each region and for each method,
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and the corresponding inter-rater agreement. Scatter-plots are shown in Figure
1. Attention maps of GP-Unet are displayed for each region in Figure 2.

There was no noticeable difference in the computation of the regions of in-
terest when using FSL masks instead FreeSurfer masks, but the interpolation
to 0.5x0.5x0.8 mm3 was needed to reuse the networks optimized on high res-
olution scans. The visual PVS scores were highly correlated to the automated
PVS scores of GP-Unet in the centrum semiovale (0.78 Pearson correlation),
were moderately correlated in the hippocampi (0.52), and a lower correlation in
the basal ganglia (0.28). Attention maps of GP-Unet (Figure 2) show that, as
expected, the method focuses on perivascular spaces.

While on research scans, CNN and GP-Unet reached a similar performance in
all regions, our experiments on clinical scans show that the correlation between
visual PVS scores and automated PVS scores of GP-Unet was significantly higher
than that of visual PVS scores and automated scores of CNN in the centrum
semiovale (Williams’ test, p-value < 0.0001) and in the hippocampi (p-value <
0.05). Contrary to CNN, GP-Unet combines features of different scales via skip
connections, which may have assisted the computation of discriminative shape
features, and improved the detection of single PVS, as opposed to detecting –
or missing because of their too large size – a cluster of PVS without being able
to individually count them.

The correlation in the basal ganglia (0.31 for GP-Unet) is lower than in the
other regions and is notably lower than the inter-rater agreement (0.56). Atten-
tion maps (Figure 2) show that the network only detects the largest PVS in the
basal ganglia, and misses less enlarged PVS. The scatter-plots (Figure 1) seem
to confirm this observation: in the basal ganglia, the networks underestimate the
number of PVS, and predict similarly low numbers of PVS for all scans.

Table 2 shows lower inter-rater agreement for the basal ganglia than for the
other regions. This might be a consequence of PVS being visually rated only in
a single slice in this region [1]. The low resolution of clinical scans in z direction
might cause a large variability in the selection of this slice, which might nega-
tively influence the reproducibility of the visual rating. The automated methods
quantify PVS in the complete volume of the basal ganglia, which was previously
shown to be more reproducible than the visual PVS scores [6]. Interestingly, the
automated PVS scores of both methods – CNN and GP-Unet – are highly cor-

Table 2. Correlation between visual and automated PVS scores. Pearson
correlations between the first rater and GP-Unet, CNN, and the second rater for each
region. Correlations were all significant (p-value < 0.01). Significant correlations after
Bonferroni correction are in bold.

GP-Unet CNN R2

Centrum Semiovale 0.78 0.52 0.75
Basal Ganglia 0.31 0.25 0.56
Hippocampi 0.51 0.33 0.64
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Fig. 2. Attention Maps of GP-Unet in an axial view. Attention maps for the
centrum semiovale are displayed on the left, for the basal ganglia on the top right, and
for hippocampi, on the bottom right. Visual scores are indicated below each region.
For each selected image, from left to right, we show the original image, the attention
map with drawn contours of the region, and the overlay of both. The colormaps of
the attention maps were manually adjusted for each image. Highlighted structures
are considered as PVS by the networks. The redder a structure is, the higher is its
weight in the computation of the automated PVS scores by the network. For the
centrum semiovale, we selected two images that correspond to an average agreement
between automated and visual score (human rater R1). For the basal ganglia and
hippocampi, we selected one image with poor agreement (top), and another image
with good agreement (bottom).

related in the basal ganglia (0.73 Pearson correlation). The correlation between
their scores was higher in the basal ganglia than in other regions.

Results in the centrum semiovale (0.78 Pearson correlation) are similar to
the inter-rater agreement (0.75). This is also close to the inter-rater agreement
(0.80 intraclass correlation coefficient) as reported in earlier studies in high res-
olution research scans [1]. Demonstrated quantification of PVS burden in the
centrum semiovale could aid in the better stratification of cerebral small vessel
disease subtypes, i.e. hypertensive arteriopathy and cerebral amyloid angiopa-
thy, especially in large and hospital-based cohorts. This would presumably have

Table 3. Mean absolute errors between visual and automated PVS scores.
Mean absolute error between the first rater and GP-Unet, CNN, and the second rater
for each region.

GP-Unet CNN R2

Centrum Semiovale 5.58 6.39 4.67
Basal Ganglia 5.67 5.49 3.78
Hippocampi 2.58 3.0 2.08
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important therapeutic and prognostic implications in terms of prescribing oral
anticoagulants and preventing intracerebral hemorrhage. This is of particular
importance in cerebral amyloid angiopathy, that has not only been related to
severe PVS burden in the centrum semiovale [3], but also to a significantly higher
risk for intracerebral bleeding in face of oral anticoagulant treatment. [12].

In future work, the results in the basal ganglia and the hippocampi may
be improved by fine-tuning the neural networks using the clinical dataset, and
by adding data augmentation during training with research scans to imitate
the resolution of clinical scans and contrast variations between different scan
protocols or scanners. The results presented are already promising considering
the large differences between training and test sets.

The complete computation of the automated PVS scores lasts only a few
minutes on CPU. Most of the computation time is spent on FSL brain structures
segmentation and registration from the T1-weighted scans to the T2-weighted
scans. After this preprocessing, the computation of the automated PVS scores
took only about 6 seconds per brain region on CPU. This low computation time
can facilitate the implementation of such a method in clinical practice.

5 Conclusion

We showed that PVS burden could be automatically quantified in the centrum
semiovale in clinical scans, with an agreement with visual scores that was similar
to the inter-observer agreement. Automated PVS scores were computed with a
neural network that was trained high-quality research scans and with only global
labels of PVS burden. These results could contribute to bringing automated PVS
quantification to the clinic and guide the administration of anti-coagulant drugs.
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