
Automated Model-based Attack Tree Analysis
using HiP-HOPS

Declan Whiting, Ioannis Sokoros, Yiannis Papadopoulos, Gilbert Regan, and
Eoin O’Carroll

University of Hull, Faculty of Computer Science and Engineering,
Cottingham Road, Hull HU6 7RX, United Kingdom

{D.Whiting-2018,I.Sorokos,Y.I.Papadopoulos}@hull.ac.uk,
Dundalk Institute of Technology,

Dublin Road, A91 K584 Dundalk, Ireland,
gilbert.regan@dkit.ie,

Portable Medical Technology,
41/42 High Street, V93 T8K7 Kilarney, Ireland,

eoin@portablemedicaltechnology.com

Abstract. As Cyber-Physical Systems (CPS) grow increasingly com-
plex and interact with external CPS, system security remains a non-
trivial challenge that continues to scale accordingly, with potentially dev-
astating consequences if left unchecked. While there is a significant body
of work on system security found in industry practice, manual diagno-
sis of security vulnerabilities is still widely applied. Such approaches are
typically resource-intensive, scale poorly and introduce additional risk
due to human error. In this paper, a model-based approach for Security
Attack Tree analysis using the HiP-HOPS dependability analysis tool is
presented. The approach is demonstrated within the context of a simple
web-based medical application to automatically generate attack trees,
encapsulated as Digital Dependability Identities (DDIs), for offline secu-
rity analysis. The paper goes on to present how the produced DDIs can
be used to approach security maintenance, identifying security capabili-
ties and controls to counter diagnosed vulnerabilities.

Keywords: attack trees, digital dependability identities, HiP-HOPS

1 Introduction

Cyber-Physical Systems (CPS) enhance traditional physical engineering systems
with computational, often networked, control. CPS applications of particular im-
portance are those found in domains of critical societal impact such as healthcare,
transportation, energy, manufacturing and infrastructure control. Such applica-
tions offer considerable benefits in terms of enabling new capabilities, such as
distributed control in traditionally centralized systems, e.g. power grids. An-
other potential benefit is improved efficiency, as semi-automatic, automatic and
autonomous control can reduce human input and error and identify resource-
optimal system behavior. In this respect, examples include autonomous control



2 D. Whiting, I. Sorokos et al.

of vehicles and smart structures. The European Commission’s Smart CPS pro-
gramme, part of the Horizon 2020, is indicative of their importance1. A more
in-depth discussion of CPS considerations, requirements and potential solutions
can be found in [14], [19].

In the aforementioned domains, safety is a key concern, as the implication of
CPS failures could be catastrophic to the well-being of affected societies and the
environment. As CPS combine both physical and digital aspects, they inherit the
traditional concerns of reliability of their physical components impacting safety
due to mechanical and/or development failure. However, with the introduction
of digital control and network communication, CPS operation is also subject to
security risks. Such risks are not necessarily in themselves novel, as they orig-
inate from digital technologies and infrastructure subject to extensive use and
research. However, the complexity and novel internal and external interactions of
CPS, coupled with the typical safety concerns mentioned previously, aggravates
the impact of potential security attacks and necessitates rigorous treatment to
mitigate the associated risks [6], [18].

Security concerns are addressed in highly variable methods in practice, de-
pending on the application domain. Methods of systematic analysis, validation
and verification can be employed to produce guarantees of system robustness
against security attacks [7],[4],[20].

Tackling nominal system development alongside safety, reliability, security
and, more generally, dependability concerns requires alignment of requirements
elicitation and allocation, design and implementation activities with depend-
ability assessment and assurance activities. When the above activities are not
properly synchronized and dependent information is shared inaccurately or with
delay, the associated discrepancy can cause further modification of the devel-
oped system later in the development life cycle, introducing much higher costs
or even failure to appropriately identify and address critical system risks. Model-
based dependability analysis is a paradigm that evolved from model-based de-
sign, centralizing both nominal and dependability-related development activities
around a common, shared system model. The common model enables efficient
and frequent synchronization across both tracks of development. As the models
involved are also typically digital, tool support can provide additional benefits
to efficiency, correctness and knowledge reuse, to name a few benefits [10].

As part of the Dependability Engineering Innovation for cyber-physical Sys-
tems (DEIS) research project2, the concept of the Digital Dependability Identity
(DDI) is being investigated [21]. DDIs are modular, composable and executable
dependability information models associated with a CPS or its constituent sub-
systems or components. DDIs can be used as a medium for model-based security
assessment and assurance, offering commensurate benefits to the development
of security-critical CPS. The approach presented here will be employed in the
context of a DDI.

1 https://ec.europa.eu/programmes/horizon2020/en/h2020-section/

smart-cyber-physical-systems
2 http://www.deis-project.eu

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/smart-cyber-physical-systems
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/smart-cyber-physical-systems
http://www.deis-project.eu


Lecture Notes in Computer Science: Attack Tree Analysis using HiP-HOPS 3

In the following sections, a novel, model-based approach of systematically
analyzing systemic security risks, identifying both high and low-level vulnera-
bilities and assigning appropriate requirements and measures will be presented.
The approach will be demonstrated within the context of a CPS system for
the healthcare domain. In section 2, previous work on security risk analysis will
be reviewed. In section 3, our novel approach will be presented. Section 4 will
describe the use case the approach is evaluated upon. Section 5 concludes by
presenting the results, alongside further discussion of implications and future
work.

2 Background

2.1 Security Threat And Risk Analysis

Due to the diverse applications for cyber-physical systems various industry-
specific standards or best practices are applied. Each standard approaches risk
differently depending on the factors deemed relevant to risk for the operating
context. For example within the medical domain their is the IEC/TR 80001-2-
1:2012, this is a technical report and guide on the application of risk management
of medical IT networks it describes a 10 step process that system creators and
maintainers can use in order to adhere to IEC 80001-1:2010 throughout a systems
life-cycle.

Confidentiality is often a key requirement of any software system especially
when dealing with sensitive personal data such as medical histories. In many
countries personal data is covered by law, such as General Data Protection Reg-
ulation (GDPR) in European countries. Infringing on GDPR within the Euro-
pean Union can result in large fines of 4% of international annual turnover or
e 20 million depending on which is the greater (GDPR, Article 83).

The growing need to ensure privacy of data and the ever increasing capa-
bilities and complexity of CPS has driven the development of frameworks and
methodologies for privacy risk assessments and analysis’s such as PRIAM (Pri-
vacy RIsk Analysis Methodology) which within the context of risk assessment
breaks a system in to 7 components: the system itself including its logical bound-
aries, stake-holders, data, risk sources. privacy weaknesses, feared events and
privacy harm [8]. Each component is comprised of categories and attributes.
Categories describe the type of data of attribute for example this could be
health data, financial data, location data etc and categories can be linked to
other components. Attributes are used to identify the aspects of a component
which contribute to privacy risk. They can be qualitative (low, medium, high)
or quantitative such as ”costs less than e 5000”. The application of PRIAM is
divided in to two stages the information gathering stage where information on
the components, categories and attributes is collated, and the risk assessment
phase where risk levels (severity and likelihood) are calculated for each privacy
item.



4 D. Whiting, I. Sorokos et al.

2.2 Security Attack Trees Analysis

Fault Tree Analysis (FTA) is an established practice in the domain of safety-
critical applications. [3] showed that FTA can be applied in the domain of
security-critical applications. Security Attack Trees (ATs) are similar to Fault
Trees but specialised for the security domain. ATs provide a formal, hierarchical,
model-based description of a system’s security under a tree structure.

At the root of an AT are outcomes which represent security-critical negative
events. Examples include maliciously gaining access to confidential information
or obtaining administrator privileges for a safety-critical system. From the root
node, intermediate nodes and logical gates link towards its leaf nodes. Interme-
diate nodes represent combined events that causally lead from their children to
the root node. Logical gates usually represent Boolean logic operators such as
AND and OR. A node’s children linked via an AND gate describe that all of the
events described in the children nodes are required for the parent node’s event
to occur. Accordingly, any event in a child’s node is sufficient to trigger a parent
node linked via an OR gate. Leaf nodes represent events which are out of scope
or cannot be further analysed within the given AT. In the context of ATs, base
events typically include direct, singular actions that form part of an attack.

An example of an AT can be seen in Fig.1, where a simplistic attack to gain
administrator privileges on an abstract system is described. To achieve their
goal, the attacker must either trick the system into executing privileged com-
mands without authenticating as an administrator or successfully authenticate
as an administrator (and then presumably execute any commands they wish).
Each of these options are analyzed further; to execute commands without ad-
ministrator authentication, the attacker can use a vulnerable user command and
attach commands as the payload of a buffer overflow attack. Alternatively, to
authenticate as an administrator, the attacker can use a brute force technique
to discover the credentials or use a ’phishing’ attack i.e. trick the administrator
into disclosing them.

Each component of a system often has its own AT, these are combined to
create the overall AT for a system. In this way, it is possible to reason about a
complex system’s security vulnerabilities in a modular fashion. This modularity
is useful when dealing with system boundaries at different levels of abstraction.

Binary properties are often assigned to each node of an AT, such as Pos-
sible/Impossible, Expensive/Not Expensive, ’Special Equipment Required’/’No
Special Equipment Required’. Numeric properties such as financial cost are also
possible. Such properties can extend the AT, enabling quantitative systems se-
curity analysis. For example using the AT shown in 2, system creators can refine
the AT by using the following query ”attacks with an accumulative value of less
than £5,000”. This means the only attack that meets this criteria is threatening
the legitimate administrator.

Such additional attributes can be described as ’resistance’ attributes [22]. The
example AT modified with such resistances can be seen in 2, where financial costs
have been assigned to each leaf node. The semantics of the resistance attributes
decide how they are combined as they move upwards through logic gates. In



Lecture Notes in Computer Science: Attack Tree Analysis using HiP-HOPS 5

Attacker executes 
commands as 
administrator

AND

Attacker gains 
administrator 

privileges

Attacker 
authenticates as 

administrator

OR

OR

Attacker 
uses buffer 

overflow 
vulnerability

Attacker 
attaches 

commands 
as payload

Attacker gains 
admin 

credentials 
via brute 

force

Attacker 
gains admin 
credentials 
via phishing 

attack

Fig. 1. Security Attack Tree Example

the example, the AND gate combines financial costs, as both actions must be
undertaken, whereas the OR gate provides the attacker choice over the options;
under the assumption that all the options are known and available, the attacker
is also assumed to choose the most economic one available.

Buldas et al presented a Multi-Parameter Attack Tree, in this type of AT the
assumption that an adversary will act within rationally and will not persevere
with an attack if the cost outweighs the potential benefits [5]. This type of AT
also means the relationship between attributes can be considered such as the
overall effort involved and the competency of the adversary.

In fact an entire family of closely related AND-0R tree structures exists,
which have been developed since ATs were first introduced, including, Attack-
Defence Trees [13] and Ordered Weighted Average (OWA) Trees [23].

2.3 Security Capabilities and Controls

Security Capabilities and Controls are designed to protect systems against at-
tacks on the confidentiality, integrity, and/or availability of a systems infor-
mation. The USA’s National Institute of Standards and Technology (NIST),
defines a security control as a safeguard or countermeasure prescribed for an
information system or an organization designed to protect the confidentiality,
integrity, and availability of its information and to meet a set of defined security
requirements. Additionally, NIST defines a Security Capability as a combination
of mutually-reinforcing security controls (i.e., safeguards and countermeasures)
implemented by technical means (i.e., functionality in hardware, software, and
firmware), physical means (i.e., physical devices and protective measures), and
procedural means (i.e., procedures performed by individuals)’ [9].



6 D. Whiting, I. Sorokos et al.

Attacker gains 
administrator 

privileges
£2000

OR

Attacker gains 
Administrator 

Credentials
£2000

OR

Attacker executes 
commands as 
administrator

£6000

AND

Attacker 
uses buffer 

overflow 
vulnerability

£5000

Attacker 
attaches 

commands 
as payload

£1000

Threaten
£2000

Bribe
£5000

Fig. 2. Attack Tree with a Cost Resistance

There are a number of international standards and frameworks which pro-
mote good security practice in part by defining security capabilities and con-
trols. The key considerations in choosing a framework include: understanding
what an organisation needs to comply with from a contractual, statutory, and
regulatory perspective; the comprehensiveness of the framework. Two of the
most well-known frameworks include NIST SP 800-53 and the ISO 27000 series
of standards which provide a framework for security management. While the
fundamentals of both frameworks are largely the same, they differ in content
and layout. Fig. 3 visualises the relationship between these two frameworks and
indicates that ISO 27002 is a subset of NIST 800-53, as ISO 27002 has 14 secu-
rity control categories which are encompassed by the 18 categories within NIST
800-53. Examples of such categories include: Incident Response; Access Control;
and Audit and Accountability. NIST 800-53 is considered best practice within
the US and vendors to the US government must meet its requirements. Outside
the US, the ISO 27002 is the de-facto security framework and is considered less
complex and easier to implement.

Another framework gaining in popularity is the NIST Cybersecurity Frame-
work. It is more high level and concise than other frameworks and references
NIST 800-53 and ISO 27002 for detail on how to implement specific controls
and processes. As the NIST Cybersecurity Framework is more lightweight than
the other existing frameworks, it may be more suitable for smaller organisations
and more readable for executives who do not have a technical background.

More specific to the healthcare domain, which is the domain of the Use Case
described in Section 4 of this paper, are the Health Information Trust Alliance
(HITRUST) Common Security Framework (CSF) and the IEC 80001 series of



Lecture Notes in Computer Science: Attack Tree Analysis using HiP-HOPS 7

Fig. 3. Relationship between NIST 800-53 and ISO 27002

technical reports. The HITRUST framework incorporates healthcare-specific se-
curity, privacy and other regulatory requirements from existing standards such
as ISO 27002 and is divided into 19 different domains or capabilities.The IEC
80001 series of technical reports provides guidance on the application of risk
management for IT-networks incorporating medical devices. IEC TR 80001-2-
8 provides guidance for the establishment of each of the security capabilities
presented in IEC TR 80001-2-2 by identifying security controls from key se-
curity standards which aim to provide guidance to a responsible organisation
when adapting the framework outlined in IEC TR 80001-2-2. IEC TR 80001-2-2
contains 19 security capabilities, with each capability having numerous security
controls extracted from the following standards: NIST SP-800-53, ISO 27002,
ISO/IEC 15408-2, ISO/IEC 15408-3, IEC 62443-3-3, ISO 27799. From these
standards ISO 27002 and ISO 27799 are fully aligned. ISO IEC 27002 specifies a
set of detailed controls for managing information security while ISO 27799 spec-
ifies additional guidance specifically for health information security and provides
health information security best practice guidelines.

In Table 1, a small sample of security capability to controls mapping can be
seen. Also included, are references to appropriate security standards, from where
guidance on the controls can be referenced in detail.

Security Capability Security Control Reference

Transmission
Integrity

Access Control for Transmission Medium SP 800-53
Network Controls ISO IEC 27002...

... ...

Table 1. Sample of Security Capability-Control Mapping



8 D. Whiting, I. Sorokos et al.

2.4 HiP-HOPS

Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS)
is a well established method and tool in the field of dependability analysis [16].
HiP-HOPS has been successfully commercialised and adopted in industry3. It
originally stems from the amalgamation of several classical dependability analy-
sis techniques such as FTA and Failure Mode and Effects Analysis (FMEA). Its
core function is the automation of such techniques with a view to increasing the
quality (less mistakes) and the turn around time (efficiency) of dependability
analysis of a system across its development lifecycle.

Over the past two decades, work has continued on HiP-HOPS and it has
proven itself as a valuable lever for extending the corpus of research within
dependable systems. For example, recently Papadopoulos et al showed that de-
pendable systems design and analysis does not have to rely solely on advances
in formal logic by using less conventional bio-inspired evolutionary techniques
by extending HiP-HOPS to include meta-heuristics [17] and Kabir et al demon-
strated that HiP-HOPS can be extended to create and analyse temporal fault
trees using a systems architectural models [11] which can be used for construct-
ing safety arguments.

Although HiP-HOPS has contributed to a steady stream of research and
publications across the field of dependable systems analysis and design, the chief
focus has been safety as an attribute of dependability. In terms of dependability it
can be said the method presented here focuses on availability, confidentially and
integrity, which are the composite properties that define security as an attribute
of dependability [2].

Although alternative tooling for modelling ATs exists, such as SecurITree4

and At-tackTree5, they do not provide the required functionality and integra-
tion to automatically generate Digital Dependability Identities. This concept is
explained in Section 2.5.

2.5 Digital Dependability Identity

The Digital Dependability Identity (DDI) [21] is a modular, composable and
executable dependability model that links system structure with dependability
information. The DDI offers numerous benefits. It enables convenient transla-
tion and exchange of heterogeneous dependability models across different tools
and techniques. It supports execution of model-agnostic evaluation on its mod-
els, which in turn enables automation of assessment and assurance activities
during design and monitoring and supervision during operation. As security is
an aspect of dependability, the DDI also aims to capture security risk, threats,
requirements, measures and other associated models. The Open Dependability

3 http://hip-hops.eu/
4 https://www.amenaza.com/
5 https://www.isograph.com/software/attacktree/

http://hip-hops.eu/
https://www.amenaza.com/
https://www.isograph.com/software/attacktree/


Lecture Notes in Computer Science: Attack Tree Analysis using HiP-HOPS 9

Exchange (ODE) metamodel6 is the DDI’s metamodel and includes specific pro-
visions for modeling security-related concepts. In particular, the ODE includes
a TARA package, whose definition can be seen in Fig.4 .

Fig. 4. ODE metamodel’s TARA package definition

The package was defined drawing inspiration from the work in [15], as well as
experience and deliberation across the DEIS project partners. The TARAPack-
age is the central containment unit, collecting security risks, measures, assets
and ’Threat Agents’ i.e. attackers under it. Risks are associated with the success
of attacker goals, which are pursued via attacks, singular actions or payload exe-
cutions. Attacks often exploit specific vulnerabilities that lie within the system’s
elements. Security capabilities and controls aim to address said vulnerabilities
and safeguard the assets of a system.

Besides security aspects, the DDI can also encapsulate failure logic and re-
produce fault trees, using an appropriate metamodel package. Analysis of DDI-

6 https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/

ODE_Metamodel

https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/ODE_Metamodel
https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/ODE_Metamodel


10 D. Whiting, I. Sorokos et al.

embedded fault trees and failure logic is supported by HiP-HOPS. More details
can be found via the DEIS project’s public deliverable D4.27.

3 Approach

We base our approach on a top-down life cycle development process, wherein
system concept informs functionality. Dependability requirements (including se-
curity) are identified and allocated to functions. The above pattern repeats as
functions decompose into more refined systems until low-level software/hardware
components are specified. Following this lifecycle process, security capabilities
are initially mapped to high-level security requirements. As requirements mirror
the decomposition of systems to subsystems and components, low-level security
requirements are addressed by the selection and, eventually, implementation of
security controls.

To guide the choice of security capability and control selection, the TARA
or equivalent risk analysis process can be applied to evaluate sources of secu-
rity risk against the system. Threat agents, potential vulnerabilities, vulnerable
system elements and other factors can be accounted for as part of the TARA.
However, a TARA initially only addresses risk at a relatively high-level; further
detail necessary to address the inner workings and complex relationships within
the system architecture requires more refined techniques applicable both ver-
tically (from systems to components) as well as horizontally (across the entire
architecture). As per section 2.2, ATs are one such technique.

Following the TARA adopted by our approach, to launch a specific security
attack, a threat agent must undertake a combination of actions or execution of
payloads. The strategy of the attack is that security vulnerabilities in constituent
system elements are exploited. The immediate effect of an action or payload ex-
ecution can be viewed as a low-level event impacting security, referred to as
a ’security violation’. Two examples of such a violation would be a malicious
administrator introducing via portable storage and launching a malicious exe-
cutable within an internal network. The attack in the example consists of an
action - introduction of the executable by the malicious administrator - and a
payload execution, each representing a security violation. Each security viola-
tion of the example can itself propagate and trigger further events. If security
measures fail to address the chain of events, the attack is successful and the
attacker’s goal will eventually be reached, compromising one of the key assets
that should have been protected.

Using ATs, the propagation logic that forms cause-effect chains of security
violations to successful attacks can be described efficiently, with tool support pro-
viding all the benefits of model-based dependability analysis. What is required of
the users is an appropriate annotation of the system architecture with local (i.e.
per relevant system element) security violation propagation logic. Effectively, for

7 http://www.deis-project.eu/fileadmin/user_upload/DEIS_D4.2_Engineering_

Tools_for_DDIs_V1_PU.pdf

http://www.deis-project.eu/fileadmin/user_upload/DEIS_D4.2_Engineering_Tools_for_DDIs_V1_PU.pdf
http://www.deis-project.eu/fileadmin/user_upload/DEIS_D4.2_Engineering_Tools_for_DDIs_V1_PU.pdf


Lecture Notes in Computer Science: Attack Tree Analysis using HiP-HOPS 11

each element that can contribute or is affected by the propagation of security vi-
olations, the user should assign appropriate Boolean logic linking combinations
of incoming or generated to outgoing security violations. Once this process is
complete, automated security attack tree analysis tools, such as HiP-HOPS, can
be used to perform qualitative analysis. The result of such an analysis is the
identification of the necessary and sufficient combinations of security violations
that can lead to attacks successfully compromising system assets.

Once the analysis results are available, the mapping provided in 2.3 can be
used to plan appropriate security controls. For the scope of the work presented
here, the mapping process will be limited to a simple look-up and selection
from the list of available controls. In general, numerous criteria can be included
in the decision process e.g. functional, design and financial constraints. The
decision process itself can apply optimization strategies, both manual and semi-
automatic, for further improvement.

4 ONCOAssist Use Case

ONCOAssist8 is a mobile platform (available on IOS, Android and in a web for-
mat) for oncology professionals. It gives them a number of clinical tools and val-
idated medical information that helps clinicians make a more informed decision
when treating patients with cancer. As a use case, a clinician uses ONCOassist
to calculate the body surface area and the drug dosage to be administered to
the patient. It has been created by Portable Medical Technology Ltd, which are
located in Ireland.

ONCOAssist interacts with private patient data and the users’ account data
as well. Since PMT is based in Ireland, they are subject to the GDPR as set out
by the EU. Failure to comply with GDPR could result in the penalties mentioned
in 2.1. The penalties of violating GDPR regulation due to ineffective security
assessment, along with the expected security requirements healthcare establish-
ments would likely set on their own before using ONCOAssist, necessitates that
rigorous security assurances are provided.

Fig. 5. ONCOAssist Authentication System Model

8 https://oncoassist.com/about/

https://oncoassist.com/about/


12 D. Whiting, I. Sorokos et al.

For brevity, authentication will be the focus of the case study, as the pro-
cess can be illustrated using a relativity small system model. Before a user can
perform any Create, Read, Update or Delete (CRUD) operations on the patient
data stored in an Electronic Health Register (EHR), they must authenticate.
Various open standards exist to be used as protocols for authentication. ON-
COAssist uses OAuth29 with OpenID10. Using open standards such as these is
often considered a good practice, as they have maximum exposure to public,
third-party scrutiny.[1]

1. Establish a system model. Following discussions with and using activity
diagrams provided by PMT we were able to produce a simplified abstract system
model of ONCOAssist’s authentication process using MATLAB, shown in figure
5. As seen in the figure, ONCOAssist can be accessed via a web application,
with access to local device storage, authenticates with an authentication server,
by requirement of the OAuth2 protocol, and finally retrieves patient data from
a resource server, which is an EHR.

2. Establish a suitable TARA. Once we have established the system model,
we can define feared events relevant to the system. In the case of ONCOAssist
the feared events are data that becomes totally or partially compromised i.e.
patient data that has been accessed to any extent by an unauthorised person.

3. Apply the TARA to the system model using HiP-HOPS. At this stage in
the process, the system model is annotated with information gathered during
the TARA using HiP-HOPS in conjunction with MATLAB’s Simulink.

4. Conduct qualitative analysis on the AT produced by HiP-HOPS. Once the
model is annotated, HiP-HOPS can be used to produce the SATs shown in Fig.
6.

Fig. 6. ONCOAssist SATs generated by HiP-HOPS

5. Refine the system model as necessary and repeat 1-4. If necessary, fur-
ther refinement can take place, depending on application, design and further
considerations. For brevity, we limit our illustration to one iteration.

6. Capture the TARA, AT, HiP-HOPS results and system models within a
DDI using the ODE. As mentioned in section 2.5, HiP-HOPS models can be
exported as DDIs. Available tools developed by DEIS can convert embedded

9 https://oauth.net/2/
10 https://openid.net/

https://oauth.net/2/
https://openid.net/


Lecture Notes in Computer Science: Attack Tree Analysis using HiP-HOPS 13

HiP-HOPS annotations into structures meaningful for DDIs such as the TARA
and FailureLogic metamodel packages. Development of these tools is ongoing;
an open-source version is available11.

7. Use the Security Capability-Control mapping to validate requirements and
identify controls for the DDI. Once the above information has been captured
in a DDI, further tool support can be used to help requirements validation and
appropriate control selection. Tool support developed by DEIS in this direction
is provided in the form of executable scripts written in the Epsilon language12.
Through Epsilon scripts, semi-automatic functionality can be designed and ex-
ecuted for DDIs generically. For instance, the process in Alg. 1 described in
pseudocode can be implemented in the Epsilon Object Language (EOL)[12] for
validating security capabilities and proposing controls.

foreach AttackerGoal g in subjectDDI do
if g.addressedBy.size() = 0 then g is not addressed
else

foreach SecurityCapability sc in g.addressedBy do
if sc.category != g.category then sc inappropriate for g
else

if sc.implementedBy.size() = 0 then sc is not implemented
else

foreach SecurityControl c in sc.implementedBy do
if c.category != sc.category then c inappropriate for sc
else c implements sc

end

end

end

end

end

end
Algorithm 1: Security Capability Validation Diagnostic Example

5 Discussion and Future Work

Security analysis and development can be an expensive process; for example,
the development of the ONCOAssist authentication system discussed in Sec-
tion 4 represents approximately 6 weeks of work-hours for their development
team, per PMT’s account. However, failure to complete adequate security anal-
ysis can have catastrophic consequences. Therefore, efforts towards minimising
this cost without compromising the quality of analysis are worthwhile. Digital

11 https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/

ODE_Tooladapter
12 https://www.eclipse.org/epsilon/

https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/ODE_Tooladapter
https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/ODE_Tooladapter
https://www.eclipse.org/epsilon/


14 D. Whiting, I. Sorokos et al.

management of SATs streamlines the process of security analysis by enabling au-
tomation (Security measures/controls and cost/benefit analysis can be derived
semi-automatically) and by reducing the risk of human error.

Our proposed approach does have some notable limitations. Using HiP-HOPS
for security analysis requires that system owners create and maintain an appro-
priately annotated system model. Thus, errors introduced in the model may
critically compromise the subsequent analysis. For instance, such errors may
occur due to lack of synchronization between the model and the implemented
software, obscuring potential vulnerabilities present in the implementation. A
further limitation of the process we have described is the lack of support for run
time preventative security actions to be taken.

In summary, security and threat analysis is a complex process, often gov-
erned by regulation and frameworks have emerged to deal with this complexity.
SATs are a valuable tool for security analysis and have been extended to deal
with a wide variety of use cases. HiP-HOPS was originally created as a tool for
traditional safety analysis but can be used for security analysis as well. DDIs are
used to model a system’s dependability, encompassing security concerns such
as availability, confidentially and integrity. The approach described in section 3
and demonstrated in section 4 can be used for semi-automated security analysis.
Considering future work, we are focusing on addressing run time security con-
cerns. Specifically, appropriate methods for reasoning, negotiating and executing
dependability-critical services using DDIs are the subject of ongoing research,
as part of DEIS.

Acknowledgements

This work was supported by the DEIS H2020 Project under Grant 732242.

References

1. Adam Freeman, A.J.: Programming .Net Security. O’Reilly Media, 1 edn. (2003)
2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-

omy of dependable and secure computing. IEEE transactions on dependable and
secure computing 1(1), 11–33 (2004)

3. Brooke, P.J., Paige, R.F.: Fault trees for security system design and analysis. Com-
puters & Security 22(3), 256–264 (2003)

4. Bugliesi, M., Calzavara, S., Focardi, R.: Formal methods for web security. Journal
of Logical and Algebraic Methods in Programming 87, 110–126 (2017)

5. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice
of security measures via multi-parameter attack trees. In: International Workshop
on Critical Information Infrastructures Security. pp. 235–248. Springer (2006)

6. Cardenas, A.A., Amin, S., Sastry, S.: Secure control: Towards survivable cyber-
physical systems. In: 2008 The 28th International Conference on Distributed Com-
puting Systems Workshops. pp. 495–500. IEEE (2008)

7. Chong, S., Guttman, J., Datta, A., Myers, A., Pierce, B., Schaumont, P., Sherwood,
T., Zeldovich, N.: Report on the nsf workshop on formal methods for security. arXiv
preprint arXiv:1608.00678 (2016)



Lecture Notes in Computer Science: Attack Tree Analysis using HiP-HOPS 15

8. De, S.J., Le Métayer, D.: Priam: a privacy risk analysis methodology. In: Data
Privacy Management and Security Assurance, pp. 221–229. Springer (2016)

9. Joint Task Force Transformation Initiative: Security and privacy controls for federal
information systems and organizations. Tech. Rep. NIST SP 800-53r4, National In-
stitute of Standards and Technology (2013). https://doi.org/10.6028/NIST.SP.800-
53r4, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-53r4.pdf
10. Joshi, A., Miller, S., Whalen, M., Heimdahl, M.: A PROPOSAL FOR MODEL-

BASED SAFETY ANALYSIS. In: 24th Digital Avionics Systems Conference.
IEEE (2005). https://doi.org/10.1109/dasc.2005.1563469, https://doi.org/10.

1109/dasc.2005.1563469
11. Kabir, S., Papadopoulos, Y., Walker, M., Parker, D., Aizpurua, J.I., Lampe, J.,

Rüde, E.: A model-based extension to hip-hops for dynamic fault propagation
studies. In: International Symposium on Model-Based Safety and Assessment. pp.
163–178. Springer (2017)

12. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object language (eol). In: Eu-
ropean Conference on Model Driven Architecture-Foundations and Applications.
pp. 128–142. Springer (2006)

13. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) Formal Aspects of Se-
curity and Trust. pp. 80–95. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

14. Lee, E.A.: Cyber physical systems: Design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC). pp. 363–369. IEEE (2008)

15. Oates, R., Thom, F., Herries, G.: Security-aware, model-based systems engineering
with sysml. In: Proceedings of the 1st International Symposium on ICS & SCADA
Cyber Security Research. pp. 78–87. BCS (2013)

16. Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and
propagation studies. In: International Conference on Computer Safety, Reliability,
and Security. pp. 139–152. Springer (1999)

17. Papadopoulos, Y., Walker, M., Parker, D., Sharvia, S., Bottaci, L., Kabir, S.,
Azevedo, L., Sorokos, I.: A synthesis of logic and bio-inspired techniques in the
design of dependable systems. Annual Reviews in Control 41, 170–182 (2016)

18. Pasqualetti, F., Dörfler, F., Bullo, F.: Attack detection and identification in cyber-
physical systems. IEEE transactions on automatic control 58(11), 2715–2729
(2013)

19. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next com-
puting revolution. In: Design Automation Conference. pp. 731–736. IEEE (2010)

20. Rivera, J.: Cyber security via formal methods: A framework for implementing
formal methods. In: 2017 International Conference on Cyber Conflict (CyCon US).
pp. 76–81. IEEE (2017)

21. Schneider, D., Trapp, M., Papadopoulos, Y., Armengaud, E., Zeller, M., Höfig, K.:
Wap: digital dependability identities. In: 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE). pp. 324–329. IEEE (2015)

22. Whitley, J.N., Phan, R.C.W., Wang, J., Parish, D.J.: Attribution of attack trees.
Computers & Electrical Engineering 37(4), 624–628 (2011)

23. Yager, R.R.: Owa trees and their role in security modeling us-
ing attack trees. Information Sciences 176(20), 2933 – 2959 (2006).
https://doi.org/https://doi.org/10.1016/j.ins.2005.08.004, http://www.

sciencedirect.com/science/article/pii/S0020025505002598

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://doi.org/10.1109/dasc.2005.1563469
https://doi.org/10.1109/dasc.2005.1563469
http://www.sciencedirect.com/science/article/pii/S0020025505002598
http://www.sciencedirect.com/science/article/pii/S0020025505002598

	Lecture Notes in Computer Science
	Introduction
	Background
	Security Threat And Risk Analysis
	Security Attack Trees Analysis
	Security Capabilities and Controls
	HiP-HOPS
	Digital Dependability Identity

	Approach
	ONCOAssist Use Case
	Discussion and Future Work


